摘要:
A multi-stage method and apparatus for determining a faulty component location along an optical path through an optical fiber in an optical network are disclosed. The optical fiber carries a plurality of wavelengths, which may or may not be modulated by low frequency dither tones that are utilized for identification purposes and performance monitoring in the optical network. First, the method comprises measuring a total power of the optical fiber and a total wavelength power as a sum of powers of the individual wavelengths at a plurality of local detection points; comparing the measured powers at the local detection points; and determining whether or not a faulty detection point exists along the optical path. If a fault is identified, the method further provides a multi-stage fault detection procedure, which comprises measuring a total wavelength power loss between a local detection point and an adjacent detection point, between the local detection point and multiple non-adjacent detection points. A correlation of the measured total wavelength power losses between the various detection points is used for determining the faulty component location along the optical path. The apparatus, which incorporates the above multi-stage method for determining the faulty component location in the optical network, is also provided.
摘要:
This invention provides a method for commissioning an optical network using internal Automatic Spontaneous Emission (ASE) light inherently present in the optical network as a light source (the ASE light source) for measuring losses inside and between nodes in the network. A modular segmented approach is adopted and the network is commissioned segment by segment. The method uses techniques for the correction of the Optical Signal to Noise Ratio induced error as well as the Spectral Filtering Error during the loss computation required for adjusting the gains of the amplifiers at each network node to an appropriate value. Since the method does not require an external laser source that needs to be moved manually from node to node, it greatly reduces the commissioning time. Since it uses only the existing components of the network nodes it also leads to a significant saving in cost.