摘要:
An object of the present invention is to provide an electronic device which is capable of conducting a proximity noncontact communication even if charging of a secondary battery is not fully completed and also whose secondary battery never falls into an overdischarge state during the proximity noncontact communication. An electronic device (2) employs a secondary battery (28), which is rechargeable by a charger (3) that gives a charge of electricity in a noncontact manner, as a power source, and is capable of conducting a proximity noncontact communication with the charger (3). The electronic device (2) repeats a charging process, in which this equipment charges the secondary battery (28) for a predetermined period (Tb1) by receiving a supply of an electric power from the charger (3) via a noncontact power-receiving secondary coil (22), and a communication process, in which this equipment conducts a data communication for a predetermined period (Ta1) when a voltage of the secondary battery (28) at a time of charging start is below a predetermined value (Va), and also repeats a charging process, in which this equipment charges the secondary battery (28) for a predetermined period (Tb2) by receiving a supply of the electric power from the charger (3) via the noncontact power-receiving secondary coil (22), and a communication process, in which this equipment conducts the data communication for a predetermined period (Ta2)(>Ta1) when the voltage of the secondary battery (28) at a time of charging start is more than a predetermined value (Va).
摘要:
An object of the present invention is to provide an electronic device which is capable of conducting a proximity noncontact communication even if charging of a secondary battery is not fully completed and also whose secondary battery never falls into an overdischarge state during the proximity noncontact communication. An electronic device (2) employs a secondary battery (28), which is rechargeable by a charger (3) that gives a charge of electricity in a noncontact manner, as a power source, and is capable of conducting a proximity noncontact communication with the charger (3). The electronic device (2) repeats a charging process, in which this equipment charges the secondary battery (28) for a predetermined period (Tb1) by receiving a supply of an electric power from the charger (3) via a noncontact power-receiving secondary coil (22), and a communication process, in which this equipment conducts a data communication for a predetermined period (Ta1)) when a voltage of the secondary battery (28) at a time of charging start is below a predetermined value (Va), and also repeats a charging process, in which this equipment charges the secondary battery (28) for a predetermined period (Tb2) by receiving a supply of the electric power from the charger (3) via the noncontact power-receiving secondary coil (22), and a communication process, in which this equipment conducts the data communication for a predetermined period (Ta2)(>Ta1) when the voltage of the secondary battery (28) at a time of charging start is more than a predetermined value (Va).
摘要:
An object of the present invention is to provide an electronic device capable of receiving payment of a charge required for a charging process even though a secondary battery of the electronic device ran into an overdischarge state and also extricating itself from the overdischarge state, and a charger used for the same. A charger (3) executes a power transmission before it conducts a proximity noncontact communication with an electronic device (2), continues this power transmission until a preliminary charging stop notification signal is sent from the electronic device (2), and conducts the proximity noncontact communication regarding to a billing process with the electronic device (2) when the preliminary charging stop notification signal is sent. After the communication regarding to the billing process is ended, the charger (3) gives a charge of electricity to the electronic device (2) again. The electronic device (2) charges a secondary battery (28) by using the power transmission, then executes the charging up to a level at which the proximity noncontact communication regarding to the billing process can be conducted, then conducts the proximity noncontact communication regarding to the billing process with the charger (3), and then restarts the power transmission from the charger (3) to execute the charging until the secondary battery (28) is fully charged. In this manner, the noncontact charging and the proximity noncontact communication are executed between the electronic device (2) and the charger (3) in a time-division system.
摘要:
A problem of the present invention is to provide a wireless communication device capable of reducing power consumption and implementing a function of reporting the intensity of a received signal to an external device as well as to provide a communication method thereof. A portable cellular phone (1) has a portable cellular phone communication section (11) that establishes communication with a portable cellar phone base station (3) and a short-range wireless communication section (13) that establishes short-range communication with a hands-free device (2). A control section detects field intensity of the portable cellular phone communication section (11) and reports the detected intensity to the hands-free device (2), whereby the hands-free device (2) displays a communication state of the portable cellular phone (1) on a display section (23). A control section (12) of the portable cellular phone (1) acquires device information about an external device from the external device connected by way of a short-range wireless communication section (13); determines whether or not reporting of field intensity to the connected external device is necessary; and deactivates the function of reporting field intensity when the report is determined to be unnecessary.
摘要:
An object of the present invention is to provide an electronic device capable of receiving payment of a charge required for a charging process even though a secondary battery of the electronic device ran into an overdischarge state and also extricating itself from the overdischarge state, and a charger used for the same. A charger (3) executes a power transmission before it conducts a proximity noncontact communication with an electronic device (2), continues this power transmission until a preliminary charging stop notification signal is sent from the electronic device (2), and conducts the proximity noncontact communication regarding to a billing process with the electronic device (2) when the preliminary charging stop notification signal is sent. After the communication regarding to the billing process is ended, the charger (3) gives a charge of electricity to the electronic device (2) again. The electronic device (2) charges a secondary battery (28) by using the power transmission, then executes the charging up to a level at which the proximity noncontact communication regarding to the billing process can be conducted, then conducts the proximity noncontact communication regarding to the billing process with the charger (3), and then restarts the power transmission from the charger (3) to execute the charging until the secondary battery (28) is fully charged. In this manner, the noncontact charging and the proximity noncontact communication are executed between the electronic device (2) and the charger (3) in a time-division system.