Abstract:
The estimation of the performance of an actually used tire in the presence of a fluid, such as drainage performance, in-snow performance, and noise performance. A tire model and a fluid model based on a finite element method are constructed from a draft design of a tire including the shape, structure, and the like, and a road surface condition is inputted by selecting a coefficient of friction &mgr; in conjunction with the construction of a road surface model (Steps 100 to 106). Boundary conditions during tire rolling or tire nonrolling are set (Step 108); deformation calculation and fluid calculation of the tire model are performed (Steps 110 to 114); and a boundary surface between the tire model and the fluid model is recognized to update the boundary conditions (Steps 118 and 120). The result of calculation is outputted as a result of estimation, the result of estimation is evaluated (Step 122), and the draft design with satisfactory performance is adopted (Step 124 to 132). If the performance is unsatisfactory, the draft design is changed (corrected) (Step 134).
Abstract:
Disclosed is a method for predicting tire performance in which a tire model, which comprises a tread pattern capable of imparting deformation by means of ground contact and/or transfer, and a snow model, in which a snow-covered road surface that comes into contact with the tire model is represented, are used to predict tire performance on the snow-covered road surface on the basis of physical quantities that occur in at least either of the tire model and the snow model. The snow model is modeled as an elasto-plastic body or an elastic body, the nonlinearity of the volume compression property of snow is represented by the relationship between the density or volume strain of the snow and the pressure of the snow, and the shear property of the snow is represented by the relationship between the yield stress of the snow and the pressure of the snow.
Abstract:
Disclosed is a method for predicting tire performance in which a tire model, which comprises a tread pattern capable of imparting deformation by means of ground contact and/or transfer, and a snow model, in which a snow-covered road surface that comes into contact with the tire model is represented, are used to predict tire performance on the snow-covered road surface on the basis of physical quantities that occur in at least either of the tire model and the snow model. The snow model is modeled as an elasto-plastic body or an elastic body, the nonlinearity of the volume compression property of snow is represented by the relationship between the density or volume strain of the snow and the pressure of the snow, and the shear property of the snow is represented by the relationship between the yield stress of the snow and the pressure of the snow.