Abstract:
A semiconductor power conversion system comprising a multiphase bridge circuit which includes semiconductor devices having a controllable firing function and a reverse blocking characteristic, a gate control circuit which gives firing commands to the semiconductor devices, a short circuiting switch in which switching devices having a controllable firing function and a reverse blocking characteristic are connected in parallel with a DC output side of the multiphase bridge circuit, and a protection control device for performing a control for protecting the multiphase bridge circuit. The protection control device includes a device for detecting a commutation failure of the multiphase bridge circuit, and a device in response to the detection of the commutation failure for producing a blocking command for blocking the firing of the semiconductor devices of the multiphase bridge circuit and producing a short-circuiting command for firing the switching device which is short-circuited which bypasses current of the commutation failure. The protection control device further includes a device for detecting ending of a short-circuit based on the ceasing of current conduction of the short circuiting switch and for halting the blocking of the firing of the semiconductor devices of the multiphase bridge circuit.
Abstract:
The operation of a variable speed electric driven pump turbine is monitored continuously during pumping to detect the operation point of the pump turbine, and to prevent it from falling into a hump characteristic region, which is recognizable on a graph of total dynamic head versus flow rate. Stalling occurs in the hump characteristic region as a result of a partial reverse flow of the water with respect to the runner. When the operation point of the pump turbine approaches the hump characteristic region, a corrective action is taken that includes increasing the output level of the electric driven pump turbine to increase its rotating speed, temporarily.
Abstract:
A variable-speed pump system comprising: a hydraulic machine having a flow adjusting means and including at least a pumping function; a rotary machine operatively connected to the hydraulic machine and including at least a motor function for rotating the hydraulic machine; a frequency converter for driving the rotary machine; and a control system for controlling variable-speed operation of the rotary machine according to a command signal from an external unit. The pump system also includes an electric power control system, a flow adjustment control system, and a rotational speed control system. The power control system has a negligibly small time constant, compared to the time constant of the rotational speed control system. The flow adjustment control system and/or the rotational speed control system has a means for setting a transmission function in such a manner that a mechanical load of the hydraulic machine is not reduced while the rotational speed thereof is increasing, and that the mechanical load is not increased while the rotational speed is lowering.
Abstract:
An improved electric power conversion system comprising a multi-phase bridge circuit composed of semiconductors such as thyristors and an associated firing circuit. It is so constructed that: if the AC input current Iac flowing in the bridge circuit is equal to or larger in value that the DC output current Idc flowing out of the bridge circuit, it will be decided than an inner defect or fault is caused, and possible expansion of inner defect will be prevented by disabling the firing circuit to extinguish the thyristors in the bridge circuit, and if the AC input current Iac is smaller than the DC output current Idc in value, the bridge is permitted to continue the operation of power conversion, thus eliminating unnecessary interruption which otherwise would be caused by exterior disturbances. Also, an improved electric power conversion system may be equipped with a device to prevent an adverse effect from being caused by abnormal rise of thyristors' temperature.
Abstract:
A variable speed hydro-power plant includes a pump turbine (2) having a S-shaped characteristics at the turbine operation. A current time turbine operating point is grasped on a turbine characteristics diagram of the pump turbine (2). A limit operation characteristics curve (nr) of the pump turbine (2) is formed in advance so as to not reach the S-shaped characteristics turbine operation region. A reach of the limit operation characteristics curve (nr) is detected, a rotating speed (N) of the pump turbine (2) is lowered. An inrush of the pump turbine (2) into the S-shaped characteristics turbine operation region is eliminated, so the continuation of a stable and reliable turbine operation can be guaranteed.