Abstract:
A micro-valve (10) adapted for integration with a micro-fluidic device such as a micro-injector of a chromatograph, the micro-valve having a first substrate (12), a second substrate (14) having microconduits (36,38) and a seating surface (30), and an actuation membrane (16) positioned between the first substrate (12) and the second substrate (14) for opening or closing a fluid path (48) of the micro-valve (10) under a force applied by a mechanism such as a pneumatic or piezoelectric device, wherein said actuation membrane (16) is constructed from a poly(aryl ether ketone).
Abstract:
An apparatus for estimating an ambient environment at which inorganic scale will form in a downhole fluid includes a stress chamber disposed in a borehole in a production zone at a location within a specified range of maximum pressure and configured to receive a sample of the fluid from the production zone and to apply an ambient condition to the sample that causes the formation of inorganic scale. An inorganic scale sensor is configured to sense formation of inorganic scale within the chamber and an ambient environment sensor is configured to sense an ambient environment within the chamber at which the formation of inorganic scale occurs. The apparatus further includes a processor configured to receive measurement data from the inorganic scale sensor and the ambient environment sensor and to identify the ambient environment at which the formation of inorganic scale occurs.
Abstract:
Protective barriers for small devices, such as sensors, actuators, flow control devices, among others, protect the devices from erosive and/or corrosive fluids, for example, formation fluids under harsh downhole conditions. The protective barriers include protective coatings and fluid diverting structures in the fluid flow which facilitate use of the small devices in high temperature-high pressure applications with erosive and/or corrosive fluids that are often found in downhole environments.
Abstract:
Methods and apparatus for rapidly measuring pressure in earth formations are disclosed. According to a first embodiment of the apparatus, a probe is provided with a movable piston having a sensor built into the piston. According to a second embodiment of the apparatus, the pressure sensor is mounted adjacent to or within the piston cylinder and a fluid pathway is provided from the sensor to the interior of the cylinder. Methods of operating the first and second embodiments include delivering the probe to a desired location in a borehole, setting the probe against the formation, and withdrawing the piston to draw down fluid for pressure sensing. A third embodiment of the probe is similar to the second but is provided with a spring loaded metal protector surrounding the cylinder and an annular rubber facing. The third embodiment is preferably used in a semi-continuous pressure measuring tool or an LWD tool having a piston controlled bowspring and a piston controlled articulated member carrying the probe. The tool is moved in a semi-set mode and when located at a desired depth is rapidly put in a fully-set mode.
Abstract:
An apparatus for estimating an ambient environment at which inorganic scale will form in a downhole fluid includes a stress chamber disposed in a borehole in a production zone at a location within a specified range of maximum pressure and configured to receive a sample of the fluid from the production zone and to apply an ambient condition to the sample that causes the formation of inorganic scale. An inorganic scale sensor is configured to sense formation of inorganic scale within the chamber and an ambient environment sensor is configured to sense an ambient environment within the chamber at which the formation of inorganic scale occurs. The apparatus further includes a processor configured to receive measurement data from the inorganic scale sensor and the ambient environment sensor and to identify the ambient environment at which the formation of inorganic scale occurs.
Abstract:
An apparatus for estimating an ambient environment at which organic scale will form in a downhole fluid includes a stress chamber disposed in a borehole in a production zone at a location of maximum pressure and configured to receive a sample of the fluid from the production zone and to apply an ambient condition to the sample that causes the formation of organic scale. A sensor is configured to sense formation of organic scale within the chamber and an ambient environment sensor is configured to sense an ambient environment within the chamber at which the formation of organic scale occurs. The apparatus further includes a processor configured to receive measurement data from the organic scaling sensor and the ambient environment sensor and to identify the ambient environment at which the formation of organic scale occurs using the organic scaling sensor measurement data and ambient environment sensor measurement data.
Abstract:
A density and viscosity sensor for measuring density and viscosity of a fluid, comprises: a housing (4) defining a chamber (8) isolated from the fluid (3), the housing (4) comprising an area defining a membrane (9) separating the chamber (8) from the fluid (3); a resonating element (5) arranged to be immersed in the fluid (3) and mechanically coupled to the membrane (9); and an actuating/detecting element (6) coupled to the resonating element (5), the actuating/detecting element (6) being positioned within the chamber (8) and mechanically coupled to the membrane (9), the actuating/detecting element (6) comprising at least one piezoelectric element (10) comprising two sides (11, 12) substantially parallel to the membrane (9); The membrane (9) has a thickness enabling transfer of mechanical vibration between the actuating/detecting element (6) and the resonating element (5).One side (11) of the piezoelectric element (10) comprises a single conductive area (13).Another side (12) of the piezoelectric element (10) comprises at least two conductive areas (14A, 14B, 14C, 14D, 14E, 14F, 14G, 14H) isolated from each other, each conductive area (14A, 14B, 14C, 14D, 14E, 14F, 14G, 14H) being coupled to an electrical potential (V1, V2) of opposite sign relatively to adjacent areas such that the resonating element (5) is driven to vibrate in a selected plane (P1, P2) perpendicular to the membrane (9).
Abstract:
A density and viscosity sensor 1 for measuring density and viscosity of fluid F, the sensor 1 comprising: a resonating element 3, 3A, 3B, 3C, 3D, 3E, 3F, 3G arranged to be immersed in the fluid F, an actuating/detecting element 4, 4A, 4B coupled to the resonating element, a connector 7 for coupling to the actuating/detecting element 4, 4A, 4B, a housing 2 defining a chamber 8A isolated from the fluid F, the housing 2 comprising an area of reduced thickness defining a membrane 9 separating the chamber 8A from the fluid F, the membrane 9 having a thickness enabling transfer of mechanical vibration between the actuating/detecting element 4, 4A, 4B and the resonating element 3, 3A, 3B, 3C, 3D, 3E, 3F, 3G, the actuating/detecting element 4, 4A, 4B is positioned within the chamber so as to be isolated from the fluid F and mechanically coupled to the membrane 9, the resonating element 3, 3A, 3B, 3C, 3D, 3E, 3F, 3G arranged to be immersed in the fluid F is mechanically coupled to the membrane 9, wherein the resonating element 3, 3A, 3B, 3C, 3D, 3E, 3F, 3G has a shape defining a first resonance mode and a second resonance mode characterized by different resonant frequencies F1, F2 and different quality factors Q1, Q2, the first resonance mode moving a volume of fluid, the second mode shearing a surrounding fluid.
Abstract:
A density and viscosity sensor 1 for measuring density and viscosity of fluid F, the sensor 1 comprising a resonating element 3, 3A, 3B, 3C, 3D arranged to be immersed in the fluid F, an actuating/detecting element 4A, 4B coupled to the resonating element, and a connector 7 for coupling to the actuating/detecting element 4A, 4B. The sensor 1 further comprises a housing 2 defining a chamber 8A isolated from the fluid F, the housing 2 comprising an area of reduced thickness defining a membrane 9 separating the chamber 8A from the fluid F. The actuating/detecting element 4A, 4B is positioned within the chamber so as to be isolated from the fluid F and mechanically coupled to the membrane 9. The resonating element 3, 3A, 3B, 3C, 3D arranged to be immersed in the fluid F is mechanically coupled to the membrane 9. The membrane 9 has a thickness enabling transfer of mechanical vibration between the actuating/detecting element 4A, 4B and the resonating element 3, 3A, 3B, 3C, 3D.
Abstract:
A density and viscosity sensor for measuring density and viscosity of a fluid, comprises: a housing (4) defining a chamber (8) isolated from the fluid (3), the housing (4) comprising an area defining a membrane (9) separating the chamber (8) from the fluid (3); a resonating element (5) arranged to be immersed in the fluid (3) and mechanically coupled to the membrane (9); and an actuating/detecting element (6) coupled to the resonating element (5), the actuating/detecting element (6) being positioned within the chamber (8) and mechanically coupled to the membrane (9), the actuating/detecting element (6) comprising at least one piezoelectric element (10) comprising two sides (11, 12) substantially parallel to the membrane (9); The membrane (9) has a thickness enabling transfer of mechanical vibration between the actuating/detecting element (6) and the resonating element (5).One side (11) of the piezoelectric element (10) comprises a single conductive area (13).Another side (12) of the piezoelectric element (10) comprises at least two conductive areas (14A, 14B, 14C, 14D, 14E, 14F, 14G, 14H) isolated from each other, each conductive area (14A, 14B, 14C, 14D, 14E, 14F, 14G, 14H) being coupled to an electrical potential (V1, V2) of opposite sign relatively to adjacent areas such that the resonating element (5) is driven to vibrate in a selected plane (P1, P2) perpendicular to the membrane (9).