Abstract:
The method described comprises the following steps: measuring, with a spectroscopic ellipsometer, the values of two quantities which are dependent on the thickness of the altered silicon layer and of a thin layer of silicon dioxide grown thereon with variations in the wavelength of the light of the measurement beam of the ellipsometer, obtaining from these measured values respective experimental curves representing the two quantities as functions of the wavelength, calculating the theoretical curves of the two quantities as functions of the wavelength considering the refractive indices and absorption coefficients of silicon dioxide and of the altered silicon as known parameters and the thickness of the altered silicon layer and the thickness of the thin silicon dioxide layer as unknowns, comparing the theoretical curves with the respective experimental curves in order to determine for which values of the unknowns the curves under comparison approximate to one another best, and extracting from the values determined the value which relates to the thickness of the altered silicon layer. The time required for the measurements and calculations is a few minutes.
Abstract:
A process for etching a dielectric layer, including the steps of forming, over the dielectric layer, a layer of polysilicon, forming over the layer of polysilicon a photoresist mask layer, etching the layer of polysilicon using the photoresist mask layer as an etching mask for selectively removing the layer of polysilicon, removing the photoresist mask layer from over the layer of polysilicon, etching the dielectric layer using the layer of polysilicon as a mask. Subsequently, the layer of polysilicon is converted into a layer of a transition metal silicide, and the layer of transition metal silicide is etched for selectively removing the latter from over the dielectric layer.