Abstract:
An apparatus includes a photoreceptor belt, a fixed transfer roller positioned on the inside of the photoreceptor belt, and a movable transfer roller positioned on the outside of the photoreceptor belt. The fixed transfer roller and the movable transfer roller are positioned to form a nip, and the photoreceptor belt and a web of print media are positioned in the nip. Also, a support roller and a compensation roller contact the web of print media. The support roller is positioned between the compensation roller and the nip. A physical link is connected to the support roller and the compensation roller. The physical link moves the support roller and the compensation roller so as to keep a constant tension on the web of print media.
Abstract:
Embodiments described herein are directed to generating physical three-dimensional color-accurate objects based on a 3D computer-based color model using printed layers of media. Embodiments can slice a 3D computer-based color model into 3D cross-sectional components, which retain the color information of the model. The 3D cross-sectional segments can be converted into 2D page images and the color information can be included in a plan image corresponding to the cross-sectional segments. Embodiments can print the page images to form cross-sectional prints which can be layered and trimmed to shape the prints into a color accurate physical object that represents the model.
Abstract:
Systems and a method for image forming systems to skip over the non-printing photoreceptor area in order to not skip a label position on a continuous print web medium. A vacuum assembly is coupled to a controller that controls different vacuum pressures at each vacuum roller therein. The vacuum rollers provide drag and drive forces to skip a seam of the photoreceptor and a residual length based on the number and size of images on the photoreceptor.
Abstract:
Embodiments described herein are directed to generating physical three-dimensional color-accurate objects based on a 3D computer-based color model using printed layers of media. Embodiments can slice a 3D computer-based color model into 3D cross-sectional components, which retain the color information of the model. The 3D cross-sectional segments can be converted into 2D page images and the color information can be included in a plan image corresponding to the cross-sectional segments. Embodiments can print the page images to form cross-sectional prints which can be layered and trimmed to shape the prints into a color accurate physical object that represents the model.
Abstract:
A dual path, single reversing roll inverter driven by a single actuator includes a single reversing roller with two, diametrically opposed idler rollers. The configuration of the reversing roller and idler rollers forms a first nip and a second nip that are alternately used to accept sequential sheets from a paper path. The first and second nips discharge the sheets into respective first and second inverting paths. A method for inverting sheets using the dual path, single reversing roll inverter includes rotating the roller in a first direction to direct a first sheet through the first nip. The roller is then rotated in a second direction opposite the first direction to direct the first sheet from the first nip and into the first inverting path and to simultaneously direct a second sheet into the second nip. A gate alternately directs the sequential sheets into the first and second nips.
Abstract:
Systems and a method for image forming systems to skip over the non-printing photoreceptor area in order to not skip a label position on a continuous print web medium. A vacuum assembly is coupled to a controller that controls different vacuum pressures at each vacuum roller therein. The vacuum rollers provide drag and drive forces to skip a seam of the photoreceptor and a residual length based on the number and size of images on the photoreceptor.
Abstract:
An apparatus includes a photoreceptor belt, a fixed transfer roller positioned on the inside of the photoreceptor belt, and a movable transfer roller positioned on the outside of the photoreceptor belt. The fixed transfer roller and the movable transfer roller are positioned to form a nip, and the photoreceptor belt and a web of print media are positioned in the nip. Also, a support roller and a compensation roller contact the web of print media. The support roller is positioned between the compensation roller and the nip. A physical link is connected to the support roller and the compensation roller. The physical link moves the support roller and the compensation roller so as to keep a constant tension on the web of print media.