Abstract:
Hydraulic drive and method for driving a pressure booster of a high-pressure apparatus. The hydraulic drive includes a pressure medium pump having one of a constant displacement pump and a pump conveying a constant volume per revolution, a servo motor coupled to drive the pump, and a controller structured to at least one of electrically control, regulate and switch the servo motor, which is arranged on at least one of a low pressure side and a high pressure side of the pressure booster.
Abstract:
Control device and method for controlling the impingement of the workpiece by a water jet or an abrasive water jet in a cutting unit. Control device includes a feeder composed of at least two flow-through areas positionable between a high-pressure water supply and a jet nozzle of the cutting unit. At least one of the flow-through areas includes a high pressure area, and at least one of the flow-through areas includes a pressure-reducing area. At least one switchable valve is arranged in the high-pressure area, a pressure-reducing mechanism is arranged in the pressure reducing area, and an impingement line is coupled to the at least two flow-through areas and coupleable to the jet nozzle.
Abstract:
A method and apparatus conveys solid particles from a supply device to a charging device for charging free-flowing cutting jets. Positive charging of the cutting jets even when located at a greater or remote distance from the supply device is ensured. To that end, the solid particles are transported in a closed circuit between the supply device and a charging or intermediate storage device and the momentarily required partial quantity of solid particles needed for charging the cutting jet is removed from the closed circuit.
Abstract:
Hydraulic drive and method for driving a pressure booster of a high-pressure apparatus. The hydraulic drive includes a pressure medium pump having one of a constant displacement pump and a pump conveying a constant volume per revolution, a servo motor coupled to drive the pump, and a controller structured to at least one of electrically control, regulate and switch the servo motor, which is arranged on at least one of a low pressure side and a high pressure side of the pressure booster.
Abstract:
Cooling device and method for cooling a working fluid of a high-pressure pump with a pressure booster. The cooling device includes a conveyor system comprising at least one pump, at least two heat exchangers arranged in series along the conveyor system, and at least two switches coupled to the at least two heat exchangers. At least one controller is structured and arranged to selectively activate and deactivate the at least two heat exchangers via the at least two switches at an adjustably preset temperature of the working fluid.
Abstract:
The invention relates to a seal of parts moveable relative to one another of high-pressure devices for liquid media, comprising a high-pressure container, into the opening of which the moveable part and, coaxially around this part toward the high-pressure side, a sleeve project, and a support ring on the front exterior area of the projecting sleeve bears against the interior surface of the opening of the high-pressure container and against a ring. In order to avoid as far as possible the wear and the material abrasion often in individual places in the contact area between pressure container and support ring with repeated compressive load and to increase the service life of the seal of high-pressure devices in this manner, it is provided according to the invention that at least the exterior surface of the support ring and/or at least the interior surface of the opening of the high-pressure container, which surface bears against the support ring or the sealant, has at least one coating applied according to a PVD (Physical Vapor Deposition) method, and/or a CVD (Chemical Vapor Deposition) method, and/or in particular a PACVD (Plasma-Assisted Chemical Vapor Deposition) method.
Abstract:
Control device and method for controlling the impingement of the workpiece by a water jet or an abrasive water jet in a cutting unit. Control device includes a feeder composed of at least two flow-through areas positionable between a high-pressure water supply and a jet nozzle of the cutting unit. At least one of the flow-through areas includes a high pressure area, and at least one of the flow-through areas includes a pressure-reducing area. At least one switchable valve is arranged in the high-pressure area, a pressure-reducing mechanism is arranged in the pressure reducing area, and an impingement line is coupled to the at least two flow-through areas and coupleable to the jet nozzle.