摘要:
An integrated circuit (25) formed at a semiconducting surface of a substrate including a common p-layer (38) includes functional circuitry (24) formed on the p-layer (38) including a plurality of terminals (IN, OUT, I/O) coupled to the functional circuitry (24). At least one ESD protection cell (30; in more detail 200) is connected to at least one of the plurality of terminals of the functional circuitry (24). The protection cell includes at least a first Nwell (37) formed in the p-layer (38), a p-doped diffusion (36) within the first Nwell (37) to form at least one Nwell diode comprising an anode (37) and a cathode (36). An NMOS transistor 200 is formed in or on the p-layer (38) comprising a n+ source (43), n+ drain (44) and a channel region comprising a p-region (41) between the source and drain, and a gate electrode (45) on a gate dielectric (46) on the channel region. The terminal of the functional circuit (24, PAD) is coupled to the cathode (36) of the Nwell diode, and the anode (37) of the Nwell diode is connected in series with a path from the drain (44) to the source (43) of the NMOS transistor (200).
摘要:
An ESD protection optimizer, a method of optimizing ESD protection for an IC and an ESD protection optimization system is disclosed. In one embodiment, the ESD protection optimizer includes: (1) a circuit analyzer configured to identify ESD cells and circuitry of the IC by comparing component information of the IC with predefined ESD protection elements and predefined circuit topologies and (2) an ESD resistance determiner configured to calculate a resistance value to couple in series with the circuitry, the resistance value based on protection cell physical attributes associated with the identified ESD cells and circuitry physical attributes associated with the identified circuitry.
摘要:
A semiconductor device for locally protecting an integrated circuit input/output (I/O) pad (301) against ESD events, when the I/O pad is located between a power pad (303) and a ground potential pad (305a). A first diode (311) and a second diode (312) are connected in series, the anode (311b) of the series connected to the I/O pad and the cathode (312a) connected to the power pad. A third diode (304) has its anode (304b) tied to the ground pad and its cathode (304a) tied to the I/O pad. A string (320) of at least one diode has its anode (321b) connected to the series between the first and second diode (node 313), isolated from the I/O pad, and its cathode (323a) connected to the ground pad. The string (320) may comprise three or more diodes.
摘要:
An integrated circuit (25) formed at a semiconducting surface of a substrate including a common p-layer (38) includes functional circuitry (24) formed on the p-layer (38) including a plurality of terminals (IN, OUT, I/O) coupled to the functional circuitry (24). At least one ESD protection cell (30; in more detail 200) is connected to at least one of the plurality of terminals of the functional circuitry (24). The protection cell includes at least a first Nwell (37) formed in the p-layer (38), a p-doped diffusion (36) within the first Nwell (37) to form at least one Nwell diode comprising an anode (37) and a cathode (36). An NMOS transistor 200 is formed in or on the p-layer (38) comprising a n+ source (43), n+ drain (44) and a channel region comprising a p-region (41) between the source and drain, and a gate electrode (45) on a gate dielectric (46) on the channel region. The terminal of the functional circuit (24, PAD) is coupled to the cathode (36) of the Nwell diode, and the anode (37) of the Nwell diode is connected in series with a path from the drain (44) to the source (43) of the NMOS transistor (200).
摘要:
A semiconductor dual guardring arrangement is provided which is useful during electrostatic discharge (ESD) events as well as during normal operating conditions. In particular, an inner guard that is located closer to an active area provides desirable performance during normal operating conditions, while an outer guardring located further from the active area provides desirable performance during an ESD event.
摘要:
A semiconductor dual guardring arrangement is provided which is useful during electrostatic discharge (ESD) events as well as during normal operating conditions. In particular, an inner guard that is located closer to an active area provides desirable performance during normal operating conditions, while an outer guardring located further from the active area provides desirable performance during an ESD event.
摘要:
Methods and systems are provided for determining efficacy of stress protection circuitry. The methods and systems employ a ring oscillator that models at least one parameter of a functional circuit to be protected by the stress protection circuit. A stress signal is applied to the ring oscillator and parametric degradation is measured to determine the effectiveness of the stress protection circuit in protecting the ring oscillator. A stress signal can be a voltage or current that stresses the normal operation of a functional circuit. The parametric degradation of the ring oscillator can be correlated to the parametric degradation that would be experienced by the functional circuit.
摘要:
A LSCR includes a substrate having a semiconductor surface which is p-doped. A first nwell and a second nwell spaced apart from one another are in the semiconductor surface by a lateral spacing distance. A first n+ diffusion region and a first p+ diffusion region are in the first nwell. A second n+ diffusion region is in the second nwell. A second p+ diffusion is between the first nwell and second nwell which provides a contact to the semiconductor surface. Dielectric isolation is between the first n+ diffusion region and first p+ diffusion region, along a periphery between the first nwell and the semiconductor surface, and along a periphery between the second nwell and the semiconductor surface. A resistor provides coupling between the second n+ diffusion region and second p+ diffusion.
摘要:
Disclosed is an electrostatic discharge (ESD) protection validator, a method of validating ESD protection for an IC and an ESD validation system. In one embodiment, the ESD protection validator includes: (1) a circuit analyzer configured to compare component information of the IC with predefined ESD protection elements to identify ESD cells of the IC and (2) an ESD cell verifier configured to compare physical attributes associated with the identified ESD cells to ESD protection requirements and determine compliance therewith.
摘要:
A semiconductor circuit for protecting an I/O pad against ESD events comprising a pMOS transistor (510) in a first n-well (511) having its source connected to Vdd and the first n-well, and its drain connected to the I/O pad; the transistor has a finger-shaped contact (513) to the first n-well, which touches source junction 512c. Source 512 has further an ohmic (silicided) connection to contact 513. A finger-shaped diode (520) with its cathode (521) is located in a second n-well and connected to the I/O pad, and its anode connected to ground. The anode is positioned between the cathode and the first n-well, whereby the finger-shaped anode and cathode are oriented approximately perpendicular to the finger-shaped transistor n-well contact. Further a third finger-shaped n-well (551) positioned between the first n-well and the diode, the third n-well connected to power (Vdd) and approximately perpendicular to the first n-well contact, acting as a guard wall (550).