摘要:
The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2—Pt and Pt—SiO2, can be used to catalyze two distinct sequential reactions. The CeO2—Pt interface catalyzed methanol decomposition to produce CO and H2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt—SiO2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.
摘要:
The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2—Pt and Pt—SiO2, can be used to catalyze two distinct sequential reactions. The CeO2—Pt interface catalyzed methanol decomposition to produce CO and H2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt—SiO2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.
摘要:
Fabrication methods disclosed herein provide for a nanoscale structure or a pattern comprising a plurality of nanostructures of specific predetermined position, shape and composition, including nanostructure arrays having large area at high throughput necessary for industrial production. The resultant nanostracture patterns are useful for nanostructure arrays, specifically sensor and catalytic arrays.
摘要:
Fabrication methods disclosed herein provide for a nanoscale structure or a pattern comprising a plurality of nanostructures of specific predetermined position, shape and composition, including nanostructure arrays having large area at high throughput necessary for industrial production. The resultant nanostracture patterns are useful for nanostructure arrays, specifically sensor and catalytic arrays.