摘要:
Embodiments of the present disclosure include a blink monitor for detecting blink occurrence in a living subject. For example, a blink sensor comprising a snap or tab electrode is positioned over one or more eye muscles known to assist in closing the eye. The electrode detects the electrical current in the muscle(s) and transmits a signal representative of the electrical current to a signal processing device. The device processes the signal to determine the occurrence of a blink, thereby producing an accurate blink electromyogram (EMG). The device and/or a caregiver may advantageously monitor the blink EMG, before and/or after occurrence processing, to determine the onset or actual occurrence of a patient condition. In an embodiment, the device monitors the blink EMG to determine the onset or occurrence of drowsiness in, for example, a driver, pilot, captain, doctor, soldier, or the like. In an embodiment, a caregiver monitors the blink EMG for one or more muscles in one or both eyes to determine the onset or occurrence of eye disease, such as, for example, strabismus.
摘要:
An improved method and apparatus for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one exemplary embodiment, the invention comprises a method of measuring cardiac output (CO) using impedance waveforms (and ECG waveforms) which are analyzed via discrete wavelet transforms. These transforms aid in identifying fiducial points within the waveforms, the fiducial points being used to calculate various parameters relating to cardiac stroke volume (such as LVET and dZ/dtmax), from which cardiac output may be determined. The use of wavelet transforms for fiducial point detection increases the accuracy of the CO determination by reducing cross-term artifact, and also significantly reduces the amount and complexity of processing required as compared to prior art time-frequency distribution or empirical techniques. Improved methods of QRS complex detection within the ECG waveform, and median filtering of an input waveform, are also disclosed.
摘要:
A method and apparatus for determining the mean arterial blood pressure (MAP) of a subject during tonometric conditions. In one embodiment, the apparatus comprises one or more pressure and ultrasound transducers placed over the radial artery of a human subject's wrist, the latter transmitting and receiving acoustic energy so as to permit the measurement of blood velocity during periods of variable compression of the artery. During compression, the ultrasound velocity waveforms are recorded and processed using time-frequency analysis. The time at which the mean time-frequency distribution is maximal corresponds to the time at which the transmural pressure equals zero, and the mean pressure read by the transducer equals the mean pressure within the artery. In another aspect of the invention, the ultrasound transducer is used to position the transducer over the artery such that the accuracy of the measurement is maximized. In yet another aspect of the invention, a wrist brace useful for measuring blood pressure using the aforementioned apparatus is disclosed. A method of continuously estimating systolic and diastolic pressure is also described.
摘要:
Impedance across a load, such as a pair of face-to-face electrodes and/or a patient's transthoracic and transmyocardial impedance, respectively, is modeled as a resistor in series with a capacitor, wherein the reactance component of the impedance equals 2&pgr;*frequency/capacitance. A reference square wave voltage is applied to the load in series with a selected load resistor, and a response voltage is measured across the load. Both the reference voltage and the response voltage are then used to estimate a transfer function between them. Equating this transfer function to a resistor-capacitor circuit model results in estimation of the actual resistance and capacitance components of the true impedance. Alternately, the impedance may be measured with a high current load, such as during a defibrillator discharge. In this case, the voltage input and outputs are sampled at a much faster rate for the resistance component estimation, with the capacitance initialization adapted for the specific type of defibrillator waveform input.
摘要:
Method and apparatus for continuous, non-invasive determination of cardiac output which processes a sequence of non-invasive cardiography signals which are quantitatively dependent upon cardiac output within a computer system and associated neural network capable of generating a single output signal for the combined input signals, wherein the neural network applies weighting factors determined during a training phase to force the output signal to match the known value of cardiac output determined by invasive means and reports the single output signal as the determined value of cardiac output.
摘要:
An improved method and apparatus for non-invasively assessing one or more physiologic parameters, such as for example those associated with the circulatory system of a living organism. In one exemplary embodiment, the invention evaluates cardiac events (e.g., beats) present within an ECG waveform to determine which beats should be retained and which rejected. This evaluation is conducted based on a hierarchical method, wherein the ECG noise and morphology, as well as various aspects of the Delta Z (change in thoracic impedance), are utilized to evaluate beats for retention/rejection. In one variant, fuzzy models are used in conducting the foregoing evaluations. Parameter median filtering is also optionally applied. The foregoing techniques increase the accuracy, stability and robustness of any systems (e.g., impedance cardiographic or otherwise) which make use of the events. Improved impedance cardiographic apparatus and methods of treatment are also disclosed.
摘要:
An improved method and apparatus for assessing time-variant waveforms and identifying artifacts of interest therein. In one exemplary embodiment, an iterative interval search technique is applied to ECG waveform data in order to identify one or more artifacts (e.g., right atrial and right ventricular “spikes”) within the waveform in conjunction with a fuzzy logic noise threshold analysis. This technique allows for robust artifact identification in waveforms where significant variations in noise and artifact periodicity may exist. The identified artifact(s) may then be used as an input to another process, such as being substituted as an ECG “Q” point for subsequent fiducial point detection within a cardiographic impedance waveform. Apparatus including computer programs for implementing the aforementioned techniques are also disclosed.
摘要:
An improved apparatus and method for determining the cardiac output of a living subject. The improved apparatus generally comprises one or more electrode assemblies or patches affixed to the skin of the subject in the vicinity of the thoracic cavity. The terminals of each electrode patch are in contact with an electrolytic gel, and are spaced a predetermined distance from one another within the patch. This predetermined spacing allows for more consistent measurements, and also allows for the detection of a loss of electrical continuity between the terminals of the patch and their associated electrical connectors in the clinical environment. The method generally comprises generating and passing a stimulation current through the terminals and the thoracic cavity of the subject, and measuring the impedance as a function of time. This impedance is used to determine cardiac muscle stroke volume, which is then used in conjunction with the subject's cardiac rate (also detected via the electrode patches) to determine cardiac output. A method of detecting a loss of electrical continuity in one or more of the terminals of the electrode patch is also disclosed.
摘要:
An improved apparatus and method for determining the cardiac output of a living subject. The improved apparatus generally comprises one or more electrode assemblies or patches affixed to the skin of the subject in the vicinity of the thoracic cavity. In one embodiment, the apparatus comprises a constant current source impedance cardiography (ICG) monitor adapted as a stand-alone system. In another embodiment, the apparatus comprises a module adapted for use with a host monitoring system, the latter providing ECG, blood pressure, and/or other inputs to the module. Method of detecting a loss of electrical continuity in one or more of the terminals of the electrode patch, and selecting between a plurality of signal inputs based on signal quality, are also disclosed.