摘要:
An adaptive method and apparatus for forecasting and controlling neurological abnormalities in humans such as seizures or other brain disturbances. The system is based on a multi-level control strategy. Using as inputs one or more types of physiological measures such as brain electrical, chemical or magnetic activity, heart rate, pupil dilation, eye movement, temperature, chemical concentration of certain substances, a feature set is selected off-line from a pre-programed feature library contained in a high level controller within a supervisory control architecture. This high level controller stores the feature library within a notebook or external PC. The supervisory control also contains a knowledge base that is continuously updated at discrete steps with the feedback information coming from an implantable device where the selected feature set (feature vector) is implemented. This high level controller also establishes the initial system settings (off-line) and subsequent settings (on-line) or tunings through an outer control loop by an intelligent procedure that incorporates knowledge as it arises. The subsequent adaptive settings for the system are determined in conjunction with a low-level controller that resides within the implantable device. The device has the capabilities of forecasting brain disturbances, controlling the disturbances, or both. Forecasting is achieved by indicating the probability of an oncoming seizure within one or more time frames, which is accomplished through an inner-loop control law and a feedback necessary to prevent or control the neurological event by either electrical, chemical, cognitive, sensory, and/or magnetic stimulation.
摘要:
A method and apparatus for forecasting and controlling neurological abnormalities in humans such as seizures or other brain disturbances. The system is based on a multi-level control strategy. Using as inputs one or more types of physiological measures such as brain electrical, chemical or magnetic activity, heart rate, pupil dilation, eye movement, temperature, chemical concentration of certain substances, a feature set is selected off-line from a pre-programmed feature library contained in a high level controller within a supervisory control architecture. This high level controller stores the feature library within a notebook or external PC. The supervisory control also contains a knowledge base that is continuously updated at discrete steps with the feedback information coming from an implantable device where the selected feature set (feature vector) is implemented. This high level controller also establishes the initial system settings (off-line) and subsequent settings (on-line) or tunings through an outer control loop by an intelligent procedure that incorporates knowledge as it arises. The subsequent adaptive settings for the system are determined in conjunction with a low-level controller that resides within the implantable device. The device has the capabilities of forecasting brain disturbances, controlling the disturbances, or both. Forecasting is achieved by indicating the probability of an oncoming seizure within one or more time frames, which is accomplished through an inner-loop control law and a feedback necessary to prevent or control the neurological event by either electrical, chemical, cognitive, sensory, and/or magnetic stimulation.
摘要:
A method and system for assessing a quality of life index to adjust an implanted device to optimize patient-specific feature signals and treatment therapies. Accumulated energy of intracranial electroencephalogram (IEEG) signals is calculated over multiple data channels during seizures over a fixed time period. Accumulated energy of a treatment control is calculated over the multiple data channels over all times of activation of the implanted device over the fixed time period. The accumulated energy of both the IEEG signals and treatment control are weighted by seizure and treatment factors to determine a quality value for the fixed time period. A quality of life index is determined as a weighted average of current and previous quality values for a plurality of fixed time periods.
摘要:
A method and apparatus for forecasting and controlling neurological abnormalities in humans such as seizures or other brain disturbances. The system is based on a multi-level control strategy. Using as inputs one or more types of physiological measures such as brain electrical, chemical or magnetic activity, heart rate, pupil dilation, eye movement, temperature, chemical concentration of certain substances, a feature set is selected off-line from a pre-programmed feature library contained in a high level controller within a supervisory control architecture. This high level controller stores the feature library within a notebook or external PC. The supervisory control also contains a knowledge base that is continuously updated at discrete steps with the feedback information coming from an implantable device where the selected feature set (feature vector) is implemented. This high level controller also establishes the initial system settings (off-line) and subsequent settings (on-line) or tunings through an outer control loop by an intelligent procedure that incorporates knowledge as it arises. The subsequent adaptive settings for the system are determined in conjunction with a low-level controller that resides within the implantable device. The device has the capabilities of forecasting brain disturbances, controlling the disturbances, or both. Forecasting is achieved by indicating the probability of an oncoming seizure within one or more time frames, which is accomplished through an inner-loop control law and a feedback necessary to prevent or control the neurological event by either electrical, chemical, cognitive, sensory, and/or magnetic stimulation.
摘要:
A method and an apparatus for predicting and detecting epileptic seizure onsets within a unified multiresolution probabilistic framework, enabling a portion of the device to automatically deliver a progression of multiple therapies, ranging from benign to aggressive as the probabilities of seizure warrant. Based on novel computational intelligence algorithms, a realistic posterior probability function P(St|x) representing the probability of one or more seizures starting within the next T minutes, given observations x derived from IEEG or other signals, is periodically synthesized for a plurality of prediction time horizons. When coupled with optimally determined thresholds for alarm or therapy activation, probabilities defined in this manner provide anticipatory time-localization of events in a synergistic logarithmic-like array of time resolutions, thus effectively circumventing the performance vs. prediction-horizon tradeoff of single-resolution systems. The longer and shorter prediction time scales are made to correspond to benign and aggressive therapies respectively. The imminence of seizure events serves to modulate the dosage and other parameters of treatment during open-loop or feedback control of seizures once activation is triggered. Fast seizure onset detection is unified within the framework as a degenerate form of prediction at the shortest, or even negative, time horizon. The device is required to learn in order to find the probabilistic prediction and control strategies that will increase the patient's quality of life over time. A quality-of-life index (QOLI) is used as an overall guide in the optimization of patient-specific signal features, the multitherapy activation decision logic, and to document if patients are actually improving.
摘要:
A method and an apparatus for predicting and detecting epileptic seizure onsets within a unified multiresolution probabilistic framework, enabling a portion of the device to automatically deliver a progression of multiple therapies, ranging from benign to aggressive as the probabilities of seizure warrant. Based on novel computational intelligence algorithms, a realistic posterior probability function P(ST|x) representing the probability of one or more seizures starting within the next T minutes, given observations x derived from IEEG or other signals, is periodically synthesized for a plurality of prediction time horizons. When coupled with optimally determined thresholds for alarm or therapy activation, probabilities defined in this manner provide anticipatory time-localization of events in a synergistic logarithmic-like array of time resolutions, thus effectively circumventing the performance vs. prediction-horizon tradeoff of single-resolution systems. The longer and shorter prediction time scales are made to correspond to benign and aggressive therapies respectively. The imminence of seizure events serves to modulate the dosage and other parameters of treatment during open-loop or feedback control of seizures once activation is triggered. Fast seizure onset detection is unified within the framework as a degenerate form of prediction at the shortest, or even negative, time horizon. The device is required to learn in order to find the probabilistic prediction and control strategies that will increase the patient's quality of life over time. A quality-of-life index (QOLI) is used as an overall guide in the optimization of patient-specific signal features, the multitherapy activation decision logic, and to document if patients are actually improving.