摘要:
In an example embodiment, the system obtains the mutual inductance (e.g., Mij) between a quiet I/O buffer and each switching I/O buffer on a PLD from an automatic SSN measurement system. The system calculates the corrected mutual inductance between the quiet I/O buffer and each switching I/O buffer by multiplying the mutual inductance by a correction factor (e.g., αj). The system multiplies each corrected mutual inductance by the rate of current flowing through the switching I/O buffer to obtain an induced voltage resulting from the switching I/O buffer. The system sums the induced voltages for all the switching I/O buffers on the PLD to obtain an estimate of total induced voltage caused in the quiet I/O buffer by all switching I/O buffers. The correction factor is based on bench measurements and depends on the amplitude of the simultaneous switching noise affecting each switching I/O buffer.
摘要:
A computer implemented method for determining a timing variation for an edge of a waveform under simultaneous switching noise (SSN) conditions is provided. The method includes characterizing an impact of mutual inductive relationships on a pin while the pin is at a quiet state and characterizing a signal edge applied to the pin. The signal edge can be characterized by the slew rate in one embodiment. A voltage change related to a curve characterizing the impact of mutual inductive relationships is identified and the voltage change is applied to a curve characterizing an impact of SSN on the signal edge. The method includes calculating a timing variation correlated to the voltage change applied to the curve characterizing the impact of SSN on the signal edge and presenting the calculated timing variation.
摘要:
A method for predicting a predetermined bit error rate for an actual data transmission from a transmitter to a target receiver over an actual backplane link is disclosed. The method involves defining a simulated backplane corresponding to an actual backplane link intended to be used for data transmission between a transmitter and a target receiver. Once the simulated backplane is defined, a data transmission from the transmitter to the receiver is simulated and captured across the simulated backplane. A waveform simulation of the data transmission over the simulated backplane is then generated. The waveform simulation takes into account characteristics of the simulated backplane and the target receiver. From the waveform simulation, a total jitter for a predetermined bit error rate for the data transmission is extrapolated.
摘要:
A method for optimizing pin selection for an integrated circuit is provided. Pin locations are mapped to a vector. The mutual inductive relationships between pins of the integrated circuit are captured into a matrix. The matrix contains the data of how a signal state of each pin is affected by the toggling of other pins within the I/O bank. The pin locations and the crosstalk matrix are combined to characterize the impact of the crosstalk on the pins for the pin placement. Thereafter, a user may decide to alter the pin placement or alter the sampling interval for the pin to avoid sampling the pin when the crosstalk may affect the signal integrity. The method may be applied for multiple simultaneous switching noise cause mechanisms impacting the signal integrity. In this embodiment, a worst case cause mechanism from the individually quantified cause mechanisms is determined by comparing an impact of each of the cause mechanisms.
摘要:
In an example embodiment, the system obtains the mutual inductance (e.g., Mij) between a quiet I/O buffer and each switching I/O buffer on a PLD from an automatic SSN measurement system. The system calculates the corrected mutual inductance between the quiet I/O buffer and each switching I/O buffer by multiplying the mutual inductance by a correction factor (e.g., αj). The system multiplies each corrected mutual inductance by the rate of current flowing through the switching I/O buffer to obtain an induced voltage resulting from the switching I/O buffer. The system sums the induced voltages for all the switching I/O buffers on the PLD to obtain an estimate of total induced voltage caused in the quiet I/O buffer by all switching I/O buffers. The correction factor is based on bench measurements and depends on the amplitude of the simultaneous switching noise affecting each switching I/O buffer.
摘要:
In an example embodiment, the system obtains the mutual inductance (e.g., Mij) between a quiet I/O buffer and each switching I/O buffer on a PLD from an automatic SSN measurement system. The system calculates the corrected mutual inductance between the quiet I/O buffer and each switching I/O buffer by multiplying the mutual inductance by a correction factor (e.g., αj). The system multiplies each corrected mutual inductance by the rate of current flowing through the switching I/O buffer to obtain an induced voltage resulting from the switching I/O buffer. The system sums the induced voltages for all the switching I/O buffers on the PLD to obtain an estimate of total induced voltage caused in the quiet I/O buffer by all switching I/O buffers. The correction factor is based on bench measurements and depends on the amplitude of the simultaneous switching noise affecting each switching I/O buffer.