Abstract:
A method for blindly detecting a transport format of a convolutional encoded signal is provided. The transport format is unknown and belongs to a set of MF predetermined reference transport formats. The method includes decoding the convolutional encoded signal using a Maximum-a-Posteriori algorithm. The decoding includes considering the MF possible reference transport formats and delivering MF corresponding groups of soft output information, calculating from each group of soft output information a calculated cyclic redundancy check (CRC) word, and comparing the calculated CRC word with the transmitted CRC word. Groups are selected which the calculated CRC word is equal to the transmitted CRC word, and an actual transport format of the convolutional encoded signal is selected from at least one soft output information among last ones of each selected group.
Abstract:
A combined decoder reuses input/output RAM of a turbo-code decoding circuit as alpha-RAM or beta-RAM for a convolutional code decoding circuit. Additional operational units are used for both turbo-coding and convolutional coding. An effective harware folding scheme permits calculation of 256 states serially on 8 ACS units.
Abstract:
A combined decoder reuses input/output RAM of a turbo-code decoding circuit as alpha-RAM or beta-RAM for a convolutional code decoding circuit. Additional operational units are used for both turbo-coding and convolutional coding. An effective harware folding scheme permits calculation of 256 states serially on 8 ACS units.