Abstract:
The present invention relates to a single crystalline silicon ingot, a single crystalline wafer, and a producing method thereof in accordance with the Czochralski method which enables reduction of a large defect area while increasing a micro-vacancy defect area in an agglomerated vacancy point area, which is the area between a central axis and an oxidation-induced stacking fault ring, by providing uniform conditions of crystal ingot growth and cooling and by adjusting a pulling rate for growing an ingot to grow, thus the oxidation-induced stacking fault ring exists only at an edge of the ingot radius.
Abstract:
A chamber with a quartz crucible established therein for growing a single crystalline ingot with a predetermined diameter D which is to be put in the crucible. The quartz crucible is wrapped in a crucible supporter fixed to a rotational axis, with a heater surrounding the crucible support and a thermos surrounding the heater to prevent heat radiated from the heater from propagating into a wall of the chamber. A thermal shield is included which has a first cylindrical shielding part installed between the ingot and the crucible, a second flange type shielding part connected to an upper part of the first shielding part, and a third shielding part connected to a lower part of the first shielding part and protruding toward the ingot.
Abstract:
The present invention relates to a single crystalline silicon ingot, a single crystalline wafer, and a producing method thereof in accordance with the Czochralski method which enables reduction of a large defect area while increasing a micro-vacancy defect area in an agglomerated vacancy point area, which is the area between a central axis and an oxidation-induced stacking fault ring, by providing uniform conditions of crystal ingot growth and cooling and by adjusting a pulling rate for growing an ingot to grow, thus the oxidation-induced stacking fault ring exists only at an edge of the ingot radius.