摘要:
The present invention provides methods of stimulating fluid production while preventing the migration of sand with produced fluids from an unconsolidated subterranean formation penetrated by a well bore. The methods basically comprise the steps of creating one or more fractures in the formation, injecting a hardenable resin composition into a portion of the formation through which the fractures extend whereby the portion of the formation is consolidated into a hard permeable mass and depositing proppant in the fractures to maintain the fractures open.
摘要:
A laboratory test method employs maximum acoustic wave velocity to determine cure time of a sample of curable resin-coated proppant (CRCP) that are packed in a pressurized chamber to simulate conditions in a reservoir rock formation during fracturing in which the CRCP will be used. The pressurized CRCP is subjected to a varying temperature profile that replicates the reservoir temperature recovery during shut-in of the fractured zone in order to develop maximum proppant pack strength and minimize proppant flow back following completion of the fracturing operation and to determine shut-in time to complete curing of the resin.
摘要:
A method for the determination of anisotropic material properties in subterranean rock formations by means of radially oriented and generally equally angularly spaced sidewall cores obtained by use of a rotary sidewall coring tool. The measurement values obtained from testing of the sidewall cores are utilized to obtain an accurate prediction of the shape of the ellipse that describes the variation in the material property under consideration as a function of direction in the bedding plane of the subterranean rock formation.
摘要:
The invention provides a method for determining the orientation of a wellbore relative to stress fields within a formation through analysis of pressure climb data during a test fracturing operation. The test fracturing operation may be formed in a plurality of wells having a known angular relation to one another in a given formation. A known angular or azimuthal relationship between the wells may be correlated with the derivative of the pressure decline proximate the relief in pressure area to define maximum azimuthal stress field and a minimum azimuthal stress field in the formation.
摘要:
Producing transverse fractures in a horizontal well may be achieved at a relatively lower fracturing pressure by forming one or more tunnels extending from the horizontal wellbore. One or more tunnels may be formed at each location along the horizontal wellbore where a transverse fracture is desired. The tunnel(s) may be formed mechanically, optically, or hydraulically. Further, fracturing may be formed at a lower pressure than would otherwise be required to form transverse fractures from a horizontal wellbore. According to some implementations, the transverse fractures may be formed without isolating a portion of the horizontal wellbore.
摘要:
An improved method for fracturing oil wells is disclosed and claimed herein. In particular, the present invention involves the determination of the direction of fracture propagation, i.e., perpendicular to the minimum stress existing within a given formation and the alignment of perforations produced by a variety of perforating devices with the previously determined direction of fracture propagation. The methods disclosed and claimed herein will eliminate many problems encountered in the prior art, including reducing the pressure required to initiate fractures and reducing the undesirable effects of near wellbore tortuosity.
摘要:
A laboratory test method employs maximum acoustic wave velocity to determine cure time of a sample of curable resin-coated proppant (CRCP) that are packed in a pressurized chamber to simulate conditions in a reservoir rock formation during fracturing in which the CRCP will be used. The pressurized CRCP is subjected to a varying temperature profile that replicates the reservoir temperature recovery during shut-in of the fractured zone in order to develop maximum proppant pack strength and minimize proppant flow back following completion of the fracturing operation and to determine shut-in time to complete curing of the resin.
摘要:
Methods of completing poorly consolidated subterranean formations bounded by one or more consolidated formations to prevent sand production from the poorly consolidated formations are provided. The methods basically comprise the steps of drilling a well bore into the consolidated boundary formation adjacent to the poorly consolidated formation, creating a propped fracture communicating with the well bore in the consolidated boundary formation which extends into the poorly consolidated formation and producing fluids from the poorly consolidated formation into the well bore by way of the propped fracture.
摘要:
The permeability and/or porosity of gas-containing substrates, particularly substrates of low permeability, can be determined by sealing a gas-containing substrate in a sealable "core analysis vessel" of known or ascertainable volume as soon as possible after removing the sample from the subsurface. Because the sealed sample is still at about formation pressure, gas will leak from the sample into the space of the vessel. The pressure build-up over time in the core analysis vessel is measured. When the pressure has equilibrated, the pressure is vented through a flowmeter to determine gas volume, followed by venting to atmosphere. The system is resealed and then the process is repeated until no subsequent pressure build-up occurs. By knowing the internal volume of the chamber, the bulk volume of the core sample, and recording the pressure build-up as a function of the time, many substrate properties, such as pore volume and permeability, can be calculated via standard methods. The effective pore volume which the gas originally occupied can be directly measured by venting the gas in the core analysis vessel to the external pressure through a flow-volume measuring device.
摘要:
A laboratory test method employs maximum acoustic wave velocity to determine cure time of a sample of curable resin-coated proppant (CRCP) that are packed in a pressurized chamber to simulate conditions in a reservoir rock formation during fracturing in which the CRCP will be used. The pressurized CRCP is subjected to a varying temperature profile that replicates the reservoir temperature recovery during shut-in of the fractured zone in order to develop maximum proppant pack strength and minimize proppant flow back following completion of the fracturing operation and to determine shut-in time to complete curing of the resin.