Abstract:
An ebullated bed hydroprocessing system is upgraded using a dual catalyst system that includes a heterogeneous catalyst and dispersed metal sulfide particles to improve the quality of vacuum residue. The improved quality of vacuum residue can be provided by one or more of reduced viscosity, reduced density (increased API gravity), reduced asphaltene content, reduced carbon residue content, reduced sulfur content, and reduced sediment. Vacuum residue of improved quality can be produced while operating the upgraded ebullated bed reactor at the same or higher severity, temperature, throughput and/or conversion. Similarly, vacuum residue of same or higher quality can be produced while operating the upgraded ebullated bed reactor at higher severity, temperature, throughput and/or conversion.
Abstract:
A hydroprocessing system involves introducing heavy oil and in situ formed metal sulfide catalyst particles, or a catalyst precursor capable of forming metal sulfide catalyst particles in situ within the heavy oil, into a hydroprocessing reactor. The metal sulfide catalyst particles are formed in situ by 1) premixing a catalyst precursor with a hydrocarbon diluent to form a precursor mixture, 2) mixing the precursor mixture with heavy oil to form a conditioned feedstock, and 3) heating the conditioned feedstock to decompose the catalyst precursor and cause or allow metal from the precursor to react with sulfur in the heavy oil to form the metal sulfide catalyst particles in situ in the heavy oil. The in situ formed metal sulfide catalyst particles catalyze beneficial upgrading reactions between the heavy oil and hydrogen and eliminates or reduces formation of coke precursors and sediment.
Abstract:
An ebullated bed hydroprocessing system is upgraded using a dual catalyst system that includes a heterogeneous catalyst and dispersed metal sulfide particles to hydroprocess opportunity feedstocks (i.e., lower quality heavy oils or lower quality feedstock blends) while maintaining or increasing the rate of production of converted products. The dual catalyst system improves the ability of the upgraded ebullated bed hydroprocessing system to accommodate and withstand negative effects of periodic use of opportunity feedstocks (e.g., without significantly increasing equipment fouling and/or sediment production). In some cases, an upgraded ebullated bed reactor using the dual catalyst system can hydroprocess opportunity feedstocks while decreasing equipment fouling and/or sediment production.
Abstract:
A system and method for preparing and conditioning a heavy oil feedstock for hydroprocessing in a hydroprocessing system includes forming metal sulfide catalyst particles in situ within the heavy oil feedstock. The metal sulfide catalyst particles are formed in situ by (1) premixing a catalyst precursor with a hydrocarbon diluent to form a diluted precursor mixture, (2) mixing the diluted precursor mixture with the heavy oil feedstock to form a conditioned feedstock, and (3) heating the conditioned feedstock to decompose the catalyst precursor and cause or allow metal from the precursor to react with sulfur in the heavy oil feedstock to form metal sulfide catalyst particles in situ in the heavy oil feedstock. The in situ formed metal sulfide catalyst particles catalyze beneficial upgrading reactions between the heavy oil feedstock and hydrogen and eliminates or reduces formation of coke precursors and sediment.
Abstract:
An ebullated bed hydroprocessing system is upgraded using a dual catalyst system that includes a heterogeneous catalyst and dispersed metal sulfide particles to hydroprocess opportunity feedstocks (i.e., lower quality heavy oils or lower quality feedstock blends) while maintaining or increasing the rate of production of converted products. The dual catalyst system improves the ability of the upgraded ebullated bed hydroprocessing system to accommodate and withstand negative effects of periodic use of opportunity feedstocks (e.g., without significantly increasing equipment fouling and/or sediment production). In some cases, an upgraded ebullated bed reactor using the dual catalyst system can hydroprocess opportunity feedstocks while decreasing equipment fouling and/or sediment production.
Abstract:
An ebullated bed hydroprocessing system is upgraded using a dual catalyst system that includes a heterogeneous catalyst and dispersed metal sulfide particles to improve the quality of vacuum residue. The improved quality of vacuum residue can be provided by one or more of reduced viscosity, reduced density (increased API gravity), reduced asphaltene content, reduced carbon residue content, reduced sulfur content, and reduced sediment. Vacuum residue of improved quality can be produced while operating the upgraded ebullated bed reactor at the same or higher severity, temperature, throughput and/or conversion. Similarly, vacuum residue of same or higher quality can be produced while operating the upgraded ebullated bed reactor at higher severity, temperature, throughput and/or conversion.
Abstract:
An ebullated bed hydroprocessing system is upgraded using a dual catalyst system that includes a heterogeneous catalyst and dispersed metal sulfide particles to increase rate of production of converted products. The rate of production is achieved by increasing reactor severity, including increasing the operating temperature and at least one of throughput or conversion. The dual catalyst system permits increased reactor severity and provides increased production of converted products without a significant increase in equipment fouling and/or sediment production. In some cases, the rate of production of conversion products can be achieved while decreasing equipment fouling and/or sediment production.
Abstract:
Methods and systems for hydroprocessing heavy oil feedstocks to form an upgraded material involve the use of a colloidal or molecular catalyst dispersed within a heavy oil feedstock, a pre-coking hydrocracking reactor, a separator, and a coking reactor. The colloidal or molecular catalyst promotes upgrading reactions that reduce the quantity of asphaltenes or other coke forming precursors in the feedstock, increase hydrogen to carbon ratio in the upgraded material, and decrease boiling points of hydrocarbons in the upgraded material. The methods and systems can be used to upgrade vacuum tower bottoms and other low grade heavy oil feedstocks. The result is one or more of increased conversion level and yield, improved quality of upgraded hydrocarbons, reduced coke formation, reduced equipment fouling, processing of a wider range of lower quality feedstocks, and more efficient use of supported catalyst if used in combination with the colloidal or molecular catalyst, as compared to a conventional hydrocracking process or a conventional thermal coking process.
Abstract:
A hydroprocessing method and system involves introducing heavy oil and well-dispersed metal sulfide catalyst particles, or a catalyst precursor capable of forming the well-dispersed metal sulfide catalyst particles in situ within the heavy oil, into a hydroprocessing reactor. The well-dispersed or in situ metal sulfide catalyst particles are formed by 1) premixing a catalyst precursor with a hydrocarbon diluent to form a precursor mixture, 2) mixing the precursor mixture with heavy oil to form a conditioned feedstock, and 3) heating the conditioned feedstock to decompose the catalyst precursor and cause or allow metal from the precursor to react with sulfur in the heavy oil to form the well-dispersed or in situ metal sulfide catalyst particles. The well-dispersed or in situ metal sulfide catalyst particles catalyze beneficial upgrading reactions between the heavy oil and hydrogen and eliminates or reduces formation of coke precursors and sediment.
Abstract:
Methods and systems for hydroprocessing heavy oil feedstocks to form an upgraded material involve the use of a colloidal or molecular catalyst dispersed within a heavy oil feedstock, a pre-coking hydrocracking reactor, a separator, and a coking reactor. The colloidal or molecular catalyst promotes upgrading reactions that reduce the quantity of asphaltenes or other coke forming precursors in the feedstock, increase hydrogen to carbon ratio in the upgraded material, and decrease boiling points of hydrocarbons in the upgraded material. The methods and systems can be used to upgrade vacuum tower bottoms and other low grade heavy oil feedstocks. The result is one or more of increased conversion level and yield, improved quality of upgraded hydrocarbons, reduced coke formation, reduced equipment fouling, processing of a wider range of lower quality feedstocks, and more efficient use of supported catalyst if used in combination with the colloidal or molecular catalyst, as compared to a conventional hydrocracking process or a conventional thermal coking process.