摘要:
A robust and general method is provided to synthesize noble metal-based amorphous-crystalline heterophase nanoparticles, each having an amorphous noble metal core and a crystalline semiconductor/metal shell or a Janus structure with an amorphous noble metal domain and a crystalline metal domain attached side by side with the amorphous noble metal domain (i.e., snowman-like structure). The as-synthesized heterophase nanoparticles not only exhibit superior activities in diverse catalytic reactions but also show unexpected high stability, which could be used as ideal templates for the seeded growth of other nanostructures, thus show tremendous potential in different applications including electrocatalysis and photocatalysis. With efficiently separated photo-induced electron and photo-induced holes, superior catalytic performance of amorphous nanomaterials, efficient solar energy conversion ability of crystalline semiconductors, as well as the synergistic effect between them, the controlled construction of amorphous noble metal-crystalline semiconductor heterostructures can be a promising route to development of high-performance catalysts towards photocatalytic reactions.
摘要:
Aspects of the present disclosure generally relate to catalyst compositions including metal chalcogenides, processes for producing such catalyst compositions, processes for enhancing catalytic active sites in such catalyst compositions, and uses of such catalyst compositions in, e.g., processes for producing conversion products. In an aspect, a process for forming a catalyst composition is provided. The process includes introducing an electrolyte material and an amphiphile material to a metal chalcogenide to form the catalyst composition. In another aspect, a catalyst composition is provided. The catalyst composition includes a metal chalcogenide, an electrolyte material, and an amphiphile material. Devices for hydrogen evolution reaction are also provided.
摘要:
Aspects of the present disclosure generally relate to catalyst compositions including metal chalcogenides, processes for producing such catalyst compositions, processes for enhancing catalytic active sites in such catalyst compositions, and uses of such catalyst compositions in, e.g., processes for producing conversion products. In an aspect, a process for forming a catalyst composition is provided. The process includes introducing an electrolyte material and an amphiphile material to a metal chalcogenide to form the catalyst composition. In another aspect, a catalyst composition is provided. The catalyst composition includes a metal chalcogenide, an electrolyte material, and an amphiphile material. Devices for hydrogen evolution reaction are also provided.
摘要:
The present invention relates to an oxygen reduction catalyst, an electrode, a membrane electrode assembly, and a fuel cell, and the oxygen reduction catalyst is an oxygen reduction catalyst containing substituted CoS2, in which the substituted CoS2 has a cubic crystal structure, the oxygen reduction catalyst contains the substituted CoS2 within 0.83 nm from the surface thereof, and the substituted CoS2 has at least one substitutional atom selected from the group consisting of Cr, Mo, Mn, Tc, Re, Rh, Cu, and Ag in some of Co atom sites.
摘要:
A method of synthesizing a doped carbonaceous material includes mixing a carbon precursor material with at least one dopant to form a homogeneous/heterogeneous mixture; and subjecting the mixture to pyrolysis in an inert atmosphere to obtain the doped carbonaceous material. A method of purifying water includes providing an amount of the doped carbonaceous material in the water as a photocatalyst; and illuminating the water containing the doped carbonaceous material with visible light such that under visible light illumination, the doped carbonaceous material generates excitons (electron-hole pairs) and has high electron affinity, which react with oxygen and water adsorbed on its surface forming reactive oxygen species (ROS), such as hydroxyl radicals and superoxide radicals, singlet oxygen, hydrogen peroxide, that, in turn, decompose pollutants and micropollutants.
摘要:
The invention relates to the conversion of paraffinic hydrocarbon to oligomers of greater molecular weight and/or to aromatic hydrocarbon. The invention also relates to equipment and materials useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading. Corresponding olefinic hydrocarbon is produced from the paraffinic hydrocarbon in the presence of a dehydrogenation catalyst containing a catalytically active carbonaceous component. The corresponding olefinic hydrocarbon is then converted by oligomerization and/or dehydrocyclization in the presence of at least one molecular sieve catalyst.
摘要:
The invention relates to the conversion of paraffinic hydrocarbon to oligomers of greater molecular weight and/or to aromatic hydrocarbon. The invention also relates to equipment and materials useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading. Corresponding olefinic hydrocarbon is produced from the paraffinic hydrocarbon in the presence of a dehydrogenation catalyst containing a catalytically active carbonaceous component. The corresponding olefinic hydrocarbon is then converted by oligomerization and/or dehydrocyclization in the presence of at least one molecular sieve catalyst.
摘要:
The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H2S.
摘要:
A desulfurization process includes desulfurizing a hydrocarbon fuel using a desulfurizing agent including a support, nickel sulfide on the support, and zinc oxide. The desulfurizing agent is heated to 250° C. or more.
摘要:
The invention relates to a self-supported mixed metal sulfide (MMS) catalyst for hydrotreating hydrocarbon feedstock and to a method for preparing the catalyst. The MMS catalyst has molar ratios of metal components Ni:Mo:W in a region defined by five points ABCDE of a ternary phase diagram, and wherein the five points ABCDE are defined as: A (Ni=0.72, Mo=0.00, W=0.25), B (Ni=0.25, Mo=0.00, W=0.75), C (Ni=0.25, Mo=0.25, W=0.50), D (Ni=0.60, Mo=0.25, W=0.15), E (Ni=0.72, Mo=0.13, W=0.15).