摘要:
Devices, systems, and methods for mechanical and/or physical modifications of nuclear waste forms, such as, but not limited to, spent nuclear fuel (SNF) assemblies, for disposing within deeply located geologic repositories, where such methods may include: (1) reducing a size of the original nuclear waste form(s) by feeding the original nuclear waste form(s) into specialty industrial machines, such as, but not limited to, industrial chipping machines (or the like), for size reduction to yield waste chips; (2) compressing, compacting, extruding, and/or shaping the waste chips into waste pucks by using industrial compactor machines; (3) loading the generated dense waste pucks into waste capsules; and (4) landing the waste capsules, filled with the dense waste pucks, into sections of wellbores that are located within deep geological formations.
摘要:
Systems and/or methods of waste disposal use human-made caverns that are constructed within deep geological formations. A given human-made cavern may be constructed by first drilling out a vertical wellbore to a deep geological formation. Then a bottom portion of the vertical wellbore is jet drilled using an abrasive jetting fluid to form a launch chamber of void volume, that is sized to fit a reaming tool in its deployed open configuration. A reaming tool, in a closed configuration, is then inserted into the vertical wellbore for landing in the launch chamber. The reaming tool is then deployed into its open configuration while in the launch chamber. Reaming operations then occur from the launch chamber directed downwards within the deep geological formation, forming a given human-made cavern. The newly formed human-made cavern may be conditioned and/or configured for receiving amounts of the waste for long-term disposal and/or storage.
摘要:
Systems and methods for long-term disposal of nuclear and/or radioactive waste materials, in liquid, solid, and/or other physical forms, using an array deeply located human-made caverns (caverns), wherein the array of caverns are within a deep geologic rock formation and below a grid pattern on a surface of the Earth. Each cavern is made from a substantially vertical wellbore, by drilling and under reaming operations upon a distal portion of the substantially vertical wellbore. At least some of the caverns may be connected by intersecting substantially lateral wellbores that may facilitate injection of protective materials into the caverns that are so intersected. The nuclear and/or radioactive waste may be preprocessed from original surface storage site(s), transported, temporarily surface stored, and then finally further processed at a selected wellsite before injection into a given of the subterranean deep caverns within the deep geologic rock formation.
摘要:
A method for managing disposal of high-level nuclear waste (HLW) may include: generating electrical power from nuclear fuel; producing HLW as a byproduct from generating the electrical power; encapsulating the HLW within waste-capsules, forming a deep geologic repository for disposing of the encapsulated HLW; and/or loading the HLW into lateral wellbore(s) of the deep geologic repository. The method may also include other steps such as, but not limited to: surface storage and transporting steps of the HLW; licensing steps; receiving payments; closing the deep geologic repository; monitoring, maintaining and/or providing security with respect to the deep geologic repository; and/or using the deep geologic repository for either temporary HLW disposal or permanent HLW disposal. At least some of the steps in the method may be carried by a nuclear power generating company and/or agent(s) thereof; such that the nuclear power generating company takes an active role in the disposal of HLW.
摘要:
Systems and/or methods of waste disposal use human-made caverns that are constructed within deep geological formations. A given human-made cavern may be constructed by first drilling out a vertical wellbore to a deep geological formation. Then a bottom portion of the vertical wellbore is jet drilled using an abrasive jetting fluid to form a launch chamber of void volume, that is sized to fit a reaming tool in its deployed open configuration. A reaming tool, in a closed configuration, is then inserted into the vertical wellbore for landing in the launch chamber. The reaming tool is then deployed into its open configuration while in the launch chamber. Reaming operations then occur from the launch chamber directed downwards within the deep geological formation, forming a given human-made cavern. The newly formed human-made cavern may be conditioned and/or configured for receiving amounts of the waste for long-term disposal and/or storage.
摘要:
In-situ vitrification of hazardous waste occurs within human-made caverns. The human-made caverns may be located at distal (terminal) ends of substantially vertical wellbores and the human-made caverns may be located within deep geological rock formations, that are located at least two thousand feet below the Earth's surface. The hazardous waste that is vitrified into glass within such human-made caverns may be radioactive. The vitrification within a given human-made cavern is accomplished by at least one heater that operates according to a predetermined heating and cooling profile. During vitrification the heater may be reciprocated up and down to introduce currents into the waste liquid for uniform temperature dispersion. The heater may be removable, reusable, single use, and/or disposable. Cold caps and/or insulating blankets may be used over a given layer of vitrified waste product within the given human-made cavern. Heater weights, mixing vanes, and/or downhole sealing packer may also be used.
摘要:
A method is described in which an automatic metering reading (AMR) method is implemented in the utility distribution system. The AMR method comprises a mesh network in which selected customers of the utility company support the network by providing collocated internet access points via the customer's existing internet connections; thus providing AMR data “backhaul”, thereby minimizing the need for the utility to build and deploy all the access points needed to populate the mesh infrastructure network. This customer access point for which the customer is remunerated, in whole or in part by the utility, allows the utility to develop and implement all the network elements to meet the utility AMR needs at a much lower cost. The customer-supported method can allow the utility to efficiently and effectively service its metering needs via the global communications network without a major investment in hardware, software and personnel.
摘要:
A method and a system for utilizing expensive energy management software systems via the internet by a plurality of remote client users without having the major software systems resident on the internet, but resident offline, on a separate primary desktop computer. The remote client user utilizes an intermediary website. The primary desktop uses a set of software agents to crawl the Internet to locate the client energy data. The primary desktop launches the software agents to upload and update the client websites. A status flag tells the client when the data transaction is complete. The primary user can purchase a simple single-user license which resides on his desktop in a single CPU or as the industry says on a single “seat” and provide energy management to a plurality of users.
摘要:
A system for managing utility meters via internet. The system includes a central station able to communicate over the internet, and a plurality of meters. The central station includes an intelligent agent. Each meter includes a communication device connectable to the internet and is positioned at a predetermined remote location for monitoring a utility supply to the remote location. The intelligent agent is able to autonomously acquire meter data from each of the plurality of meters over the internet. The plurality of meters are at least one of power, water and gas meters. Each of the meters have a unique Universal Resource Locator and the intelligent agent is able to display data acquired from said meter in a desired format. The meters may each include a receiver for receiving data from the intelligent agent, communication between the intelligent agent and meter being bi-directional. The central station also includes a load forecasting agent able to predict an amount of power used at the remote locations based upon data acquired by the intelligent agent. The intelligent agent and load forecasting agent are able to optimize operation of the meters and supply of a utility to the remote location via the meters.
摘要:
Devices, systems, and methods are used to seal and close a deeply located waste repository such that waste and byproducts thereof within the deeply located waste repository are prevented from migrating upwards past a modified cap-zone over geologically relevant time. The waste repository is located within a deep geologic formation. The modified cap-zone is located above the deep geologic formation and below a terrestrial surface of the Earth. The modified cap-zone is a portion of a cap-zone that gets modified by: (1) having at least one radial-hole made into the cap-zone; (2) reaming away portions of the cap-zone rock from around a wellbore that passes through the cap-zone to form a void-volume; (3) filling the void-volume with a crushed rock composite; (4) melting the crushed rock within the void-volume and native and intact rock of the cap-zone; and then (5) cooling that formally melted rock to yield the modified cap-zone.