摘要:
A sensor for use in an optical temperature detector system having a birefringent element made of a single crystal metal oxide plate. A broad band light spectrum is transmitted through a first linear polarizing element to create a linearly polarized wave. The linearly polarized wave on passing through the single crystal metal oxide plate decomposes into first and second orthogonally polarized waves. Propagation of the linearly polarized wave through the birefringent single crystal metal oxide plate introduces a temperature dependent phase shift between the two waves. Thereafter, a second linear polarizer combines the first and second orthogonally polarized waves to create a modulated light spectrum having a fringe pattern, the fringe pattern being a function of the current temperature experienced by said birefringent element. A fiber optic cable connected to the second linear polarizing element carries the modulated light spectrum to an opto-electronic interface where the fringe pattern is extracted and a computer compatible signal is generated for a CPU to accurately indicate current environmental temperature conditions up to 1000.degree. C. experienced by the single crystal plate crystal in the birefringent element.
摘要:
This invention provides birefringent optical waveguide structures of crystalline aluminum garnet of a high refractive index which are clad with crystalline aluminum garnet of a lower refractive index. Due to predetermined lattice mismatch between garnet substrate and cladding layer, strain is induced which causes a stress with resultant birefringence in the waveguide layer. When linearly polarized light enters such stressed waveguide in certain orientations, the linear polarization will be preserved by the stress-induced birefringence. These birefringent clad waveguides can be in the form of slabs, channels, ribs, or any of the typical optical waveguide structures. They are useful at high temperature.
摘要:
A birefringent bias is provided to an optical sensor by the addition of one or more single birefringent elements where the total birefringence-length product remains within the accepted tolerances of current devices. The bias provided by two or more elements is such that where each element has a birefringence, a dB/dT and a coefficient of thermal expansion term, the elements are arranged in tandem so that the combined birefringence terms equal the required birefringence bias and the dB/dT and coefficient of thermal expansion terms effectively cancel.