摘要:
A description is given of a phase-change optical data storage medium (20 having a recording stack (2) with a recording layer (6) and a metal reflective layer (3) comprising at least one transparent layer (4, 8) of the material indium tin oxide (ITO). Use of an ITO layer (4, 8) in the recording stack (2) improves the cooling behavior of the recording layer (6) combined with good optical contrast. Thus, higher possible data rates are achieved.
摘要:
With the disc-shaped recording medium, or the disc manufacturing method according to the present invention, for both the single-layer disc and the multi-layer disc, a recording layer L0, which is to be the first layer, is at the same distance, along the direction of disc thickness, from the surface of the cover layer CVLs on which falls the laser light. For the multi-layer disc, the second layer L1 and the following layer(s) are formed at the locations which are closer to the cover layer CVLs than the first layer L0. Management information may be recorded by mobbling grooves, each layermay have tert areas, defect information, a replacement area. Thus, it is possible to improve compatibility, reliability and accessibility between a single-layer disc and a multi-layer disc. The spherical aberration for the recording/reproducing light may be controlled with respect to the selected layer.
摘要:
The optical information medium for rewritable recording by means of a laser-light beam (14, 15) has a first recording stack (8) having a phase change type recording layer (10), sandwiched between two dielectric layers (9, 11), and has a second recording stack having a phase change type recording layer (5), sandwiched between two dielectric layers (3, 5). A transparent spacer layer (7) is interposed between the first recording stack (8) and the second recording stack (2). A metal mirror layer (3) is present proximate the second recording stack (2) at a side remote from the transparent spacer layer (7). The first recording stack (8) has a phase change type recording layer (10) with substantially growth dominated or substantially nucleation dominated crystallization. The second recording stack (2) has a phase change type recording layer (5) of a kind different from the kind selected for the first recording stack (8). An optimal recording and erasing behavior is achieved with a laser-light write pulse strategy and a recording velocity which are substantially equal for the recording layers (5, 10).
摘要:
An optical data storage medium is described comprising at least: —a synthetic resinous substrate, having a first side and a second opposite side, —a first layer stack comprising: a data storage layer stack formed on the first side of the substrate, a transparent cover stack formed on the data storage layer stack, the data storage layer stack being readable through the cover stack by means of a focused radiation beam. A second layer stack having a permeablity for moisture
摘要:
A multi-stack optical data storage medium for rewritable recording by a focused laser-light beam, the medium having a substrate with deposited on aside thereof: a first recording stack comprising a phase-change type recording layer at least one further recording stack comprising a phase-change type recording layer, a transparent spacer layer adjacent each further recording stack. The further recording stack is sufficiently transmissive to ensure proper sensitivity for reading and recording in the first recording stack. For this purpose, at least one indium tin oxide layer is present in at least one of the further recording stacks. The indium tin oxide layer further ensures proper cooling behavior of the recording layer of the further recording stack in order to obtain sufficient recording performance in the farther recording stack.
摘要:
A method to manufacture a thin film photovoltaic device is provided. The method involves mastering of sub-micron features onto a first master substrate, followed by duplication of the master surface onto one or multiple stampers, and replication of the micro-texture into the superstrate or substrate surface by using the multiple stampers. The method also discloses depositing a TCO layer on the superstrate or substrate surface having the sub-micron features, such that a side of the TCO layer distant from the superstrate or substrate surface having the sub-micron features. Thereafter, the method includes depositing the one or more semiconductor layers, the back contact layer and the cover substrate.