摘要:
An image processing system can realize a more accurate and high-quality correction of defective pixels by including an image pickup device, an obtaining unit obtaining information showing positions of defective pixels occurred at the image pickup device, a creating unit creating discrimination information showing the positions of the defective pixels in an image generated via the image pickup device, a detecting unit detecting a correlativity with neighborhood pixels by each defective pixel, and an estimating unit estimating a pixel value by each defective pixel in accordance with a detected result by the detecting unit. Incidentally, the image processing system is configured by an imaging device and a computer recording an image processing program, in which the imaging device includes the image pickup device, the obtaining unit, and the creating unit, and the image processing program may make the computer function as the detecting unit and the estimating unit.
摘要:
The computer-readable computer program product contains an image processing program for creating image data for display from RAW image data. The program includes: a command to read out the RAW image data from an image file; a command to read out from a first storage section of the image file a first parameter, created by the camera that created the RAW image data, for performing data conversion processing upon the RAW image data to create the image data for display from the RAW image data; a command to store a second parameter set by the image processing program in a second storage section, which is a different section of the image file from the first storage section; and a command to create the image data for display from the RAW image data, by performing data conversion processing using at least the first parameter or the second parameter.
摘要:
A signal processing apparatus includes a signal processing section applying a spatial frequency filter to a pixel signal to perform a signal processing of noise reduction and/or edge enhancement, and a coefficient correcting section setting a coefficient group of the spatial frequency filter to a correct coefficient group. The coefficient correcting section includes an analyzing section, a correspondence section and a coefficient determining section. The analyzing section sets a local area to include an object pixel of the signal processing, and obtains average color information. A correspondence relation between the average color information and the correct coefficient group is set beforehand in the correspondence setting section. The coefficient determining section checks the correspondence relation of the correspondence setting section on the basis of the average color information obtained by the analyzing section, and adjusts the correct coefficient group used for the pixel of the processing object.
摘要:
An electronic camera according to the present invention includes an imaging part, a conditional information determining part, a storage part and a correction processing part. The imaging part images a subject to produce image data. The conditional information determining part determines conditional information that is indicative of the conditions of the subject at a time when the subject is imaged. The storage part stores previous conditional information determined by the conditional information determining part. The correction processing part performs correction processings on the image data, according to both the previous conditional information stored in the storage part and the latest conditional information determined by the conditional information determining part. This enables results of the previous correction processings to be reflected in the current processing, thereby realizing the correction processing with both adaptability and stability.
摘要:
The objects of the present invention are to provide an electronic camera which is able to precisely evaluate the type of a subject and perform an optimal gray-scale transformation on the image of the subject. The electronic camera comprises: an histogram creation unit for creating an intensity histogram of an image obtained with an image sensor; and a setting unit for setting a gray-scale transformation characteristic to be applied to the image according to the created intensity histogram. Using the created histogram makes it possible to precisely evaluate the type of the subject and set an optimal gray-scale transformation characteristic.
摘要:
A color photographing device is equipped with a light-receiving section having a red pixel selectively receiving red light and outputting a red pixel signal and a green pixel selectively receiving green light and outputting a green pixel signal. The color photographing device is further equipped with an optical filter disposed on the side with a light-receiving surface of the light-receiving section. The optical filter substantially equalizes the signal level of the red pixel signal and the signal level of the green pixel signal when achromatic color illuminated by a solar light source in the daytime is photographed. Therefore, a white balance gain Wr at about 5000K can be lowered as compared with a conventional color photographing device. Accordingly, reduction of color noises and enhancement of gradation can be expected.
摘要:
The present invention includes a color converting section carrying out color conversion processing and a coefficient correcting section setting a correcting coefficient group to a coefficient group of the color conversion. The coefficient correcting section sets a local area containing a pixel to be processed, and calculates “feature information of the local area” containing at least one of averaged color information, averaged luminance information, and flatness on the basis of the pixel signals of the local area. The coefficient correcting section determines a correcting coefficient group to be used for the pixel to be processed on the basis of the feature information of the local area. With this construction, the present invention suppresses influence of noise when changing the color conversion processing for each pixel.
摘要:
An image-processing device of the invention can appropriately correct a gradation of an image to be processed in accordance with the image. Thus, it divides the image into plural small areas; generates image information indicating a characteristic of the image for each small area; determines an evaluation value indicating luminosity of each pixel constituting the image, according to the image information generated for each small area and image information generated for each of adjacent small areas to the each small area; and performs an image processing on each pixel of the image according to the determined evaluation value. A digital still camera of the invention can appropriately correct a gradation of an image created by shooting in accordance with the image. Moreover, an image-processing program and an image-processing method of the invention realize appropriate gradation correction in accordance with an image to be processed.
摘要:
An image processing device of the present invention includes a color-gamut determining part, a color-space determining part, and a color-space conversion part. The color-gamut determining part determines a color gamut as a range of color distribution from input image data. The color-space determining part determines a color space substantially covering the color gamut determined by the color-gamut determining part. The color-space conversion part converts the input image data into such image data that is rendered in the determined color space. The colors of the subject can thus be reproduced accurately from the converted image data.
摘要:
An image processing apparatus of the present invention can perform appropriate edge enhancement processing on any image while preventing increases in noise and chromatic aberration in the process of image processing. The image processing apparatus obtains photographic information present at generation of the image, determines, based on the photographic information, an edge enhancement coefficient to be used in performing edge enhancement processing, and performs edge enhancement processing to the image using the determined coefficient. Further, an image processing method of the present invention makes it possible to perform appropriate edge enhancement processing on any image while preventing increases in noise and chromatic aberration in the process of image processing.