摘要:
A high-corrosion-resistant martensitic stainless steel possessing excellent weldability and SSC resistance, having a tempered martensitic structure, characterized by comprising steel constituents satisfying by weight C: 0.005 to 0.035%, Si: not more than 0.50%, Mn: 0.1 to 1.0%, P: not more than 0.03%, S: not more than 0.005%, Mo: 1.0 to 3.0%, Cu: 1.0 to 4.0%, Ni: 1.5 to 5.0%, Al: not more than 0.06%, N: not more than 0.01%, and Cr satisfying a requirement represented by the formula 13>Cr+1.6Mo.gtoreq.8, C+N.gtoreq.0.03, 40C+34N+Ni+0.3Cu-1.1Cr-1.8 Mo.gtoreq.10, or further comprising at least one element selected from the group consisting of Ti: 0.05 to 0.1%, Zr: 0.01 to 0.2%, Ca: 0.001 to 0.02%, and REM: 0.003 to 0.4%, with the balance consisting essentially of Fe. A process for producing a martensitic stainless steel, comprising the steps of: subjecting a steel plate, produced by hot-rolling a stainless steel slab having the above composition, to austenitization at a temperature of Ac.sub.3 point to 1000.degree. C. to harden the steel plate; subjecting the hardened steel plate to final tempering at a temperature of 550.degree. C. to Ac.sub.1 point; and cold-rolling the steel plate.
摘要:
A method of producing clad steel plate comprises the steps of preparing an assembly slab by superposing a stainless-steel or nickel alloy cladding material onto base metal consisting essentially of, by weight, 0.020 to 0.06% carbon, 0.5% or less silicon, 1.0 to 1.8% manganese, 0.03% or less phosphorus, 0.005% or less sulfur, 0.08 to 0.15% niobium, 0.005 to 0.03% titanium, 0.05% or less aluminum, 0.002 to 0.006% nitrogen, and one or two elements selected from among a group consisting of 0.05 to 1.0% nickel, 0.05 to 1.0% copper, 0.05 to 0.5% chromium, 0.05 to 0.3% molybdenum and 0.001 to 0.005% calcium, with the balance being iron and unavoidable impurities, and welding its periphery; heating the slab to 1100.degree. to 1250.degree. C.; rolling the slab at a reduction ratio of 5 or more and a rolling finish temperature of 900.degree. to 1050.degree. C.; air cooling for 60 to 200 seconds; cooling the slab from a temperature of at least 750.degree. C. to 555.degree. C. or below at a cooling rate of 5.degree. to 40.degree. C./sec, and following this by air cooling.
摘要:
A process for producing high-tension bainitic steel having high-toughness and excellent weldability by subjecting a bainitic steel of a specific composition to a low-temperature heating and subsequently rolling the steel under specific conditions.
摘要:
An ultra-high strength steel having excellent ultra-low temperature toughness, a tensile strength of at least about 930 MPa (135 ksi), and a microstructure comprising predominantly fine-grained lower bainite, fine-grained lath martensite, or mixtures thereof, transformed from substantially unrecrystallized austenite grains and comprising iron and specified weight percentages of the additives: carbon, silicon, manganese, copper, nickel, niobium, vanadium, molybdenum, chromium, titanium, aluminum, calcium, Rare Earth Metals, and magnesium, is prepared by heating a steel slab to a suitable temperature; reducing the slab to form plate in one or more hot rolling passes in a first temperature range in which austenite recrystallizes; further reducing said plate in one or more hot rolling passes in a second temperature range below said first temperature range and above the temperature at which austenite begins to transform to ferrite during cooling; quenching said plate to a suitable Quench Stop Temperature; and stopping said quenching and allowing said plate to air cool to ambient temperature.
摘要:
This invention adds elements such as Cu, B, Cr, Ca, V, etc., to a low carbon-high Mn--Ni--Mo-trace Ti type steel, and allows the steel to have a tempered martensite/bainite mixed structure containing at least 60% of tempered martensite transformed from un-recrystallized austenite having a mean austenite grain size (d.gamma.) of not greater than 10 .mu.m as a micro-structure, or a tempered martensite structure containing at least 90% of martensite transformed from un-recrystallized austenite. The present invention further stipulates a P value to the range of 1.9 to 4.0 and thus provides a ultra-high strength steel having a tensile strength of at least 950 MPa (not lower than 100 of the API standard) and excellent in low temperature toughness, HAZ toughness and field weldability in cold districts.
摘要:
Due to increasing demands for steel to be used for construction such as buildings, pressure vessels, pipe lines or the like, various kinds of high tension steels, particularly steels suitable for welding have increasingly been developed.Heretofore, proposed methods of making such high tension steel have relied on so-called cold rolling and/or rolling followed by quenching and tempering, however, these conventional steels have suffered from drawbacks such as a tempering step indispensable after quenching, softening of welded zone and lack of uniformity in the metal structure in the direction of plate thickness.A compositional feature of the new method resides in addition of minor amounts of Ti and B along with Nb as contributing to grain refining or precipitation hardening elements in addition to limited amounts of other ingredients such as C, Si, Mn, S, Al and N.Further addition of at least one of V, Ni, Cu, Cr, Mo, Ca and REM also acts to improve the properties of the steel.The steel prepared to have the aforesaid composition is subjected to controlled heating, subsequent rolling under prescribed rolling reduction ratio, temperature for terminating rolling and to a specified cooling rate.The steel plate thus processed has a structure having fine bainite grains alone or a duplex grain structure consisting of fine bainite and fine ferrite particularly finer toward the surface so as to satisfy both ductility and toughness without tempering operation and displays good weldability and toughness even at a welded zone as well as stable hardness distribution throughout the plate thickness.
摘要:
A method is provided for producing an ultra-high strength steel having a tensile strength of at least about 900 MPa (130 ksi), a toughness as measured by Charpy V-notch impact test at −40° C. (−40° F.) of at least about 120 joules (90 ft-lbs), and a microstructure comprising predominantly fine-grained lower bainite, fine-grained lath martensite, or mixtures thereof, transformed from substantially unrecrystallized austenite grains and comprising iron and specified weight percentages of the additives: carbon, silicon, manganese, copper, nickel, niobium, vanadium, molybdenum, chromium, titanium, aluminum, calcium, Rare Earth Metals, and magnesium. A steel slab is heated to a suitable temperature; the slab is reduced to form plate in one or more hot rolling passes in a first temperature range in which austenite recrystallizes; said plate is further reduced in one or more hot rolling passes in a second temperature range below said first temperature range and above the temperature at which austenite begins to transform to ferrite during cooling; said plate is quenched to a suitable Quench Stop Temperature; and said quenching is stopped and said plate is allowed to air cool to ambient temperature.
摘要:
An ultra-high strength boron-containing steel having a tensile strength of at least about 900 MPa (130 ksi), a toughness as measured by Charpy V-notch impact test at −40° C. (−40° F.) of at least about 120 joules (90 ft-lbs), and a microstructure comprising predominantly fine-grained lower bainite, fine-grained lath martensite, or mixtures thereof, transformed from substantially unrecrystallized austenite grains and comprising iron and specified weight percentages of the additives: carbon, silicon, manganese, copper, nickel, niobium, vanadium, molybdenum, chromium, titanium, aluminum, calcium, Rare Earth Metals, and magnesium, is prepared by heating a steel slab to a suitable temperature; reducing the slab to form plate in one or more hot rolling passes in a first temperature range in which austenite recrystallizes; further reducing said plate in one or more hot rolling passes in a second temperature range below said first temperature range and above the temperature at which austenite begins to transform to ferrite during cooling; quenching said plate to a suitable Quench Stop Temperature; and stopping said quenching and allowing said plate to air cool to ambient temperature.
摘要:
A wire for gas metal arc welding containing 0.01 to 0.06 wt % of C, 0.10 to 0.60 wt % of Si, 0.9 to 3.1 wt % of Mn, 0.7 to 2.0 wt % of Cr, 0.005 to 0.06% of Ti, not greater than 0.08 wt % of Al and if necessary, 0.05 to 0.30 wt % of Cu, and the balance of Fe and unavoidable impurities. This wire improves the selective corrosion resistance and the low temperature toughness of the resulting weld metal, and is particularly suitable for circumferential welding of line pipes for transporting CO.sub.2 -containing petroleum, natural gases or CO.sub.2.
摘要:
The production process characterized in that a steel ingot or slab containing not less than 0.004% of TiN not larger than 0.02.mu. is heated to a temperature not higher than 1150.degree. C. and rolled, and growth of the .gamma. grains during this heating and rolling step is prevented by TiN to improve the toughness, and the resultant steel product has an excellent low-temperature toughness with a yield point of 40 kg/mm.sup.2 or higher, and is useful as hot rolled or as heated at a temperature ranging from 300.degree. to 750.degree. C. after the hot rolling.