Abstract:
An AR server 30 includes a reception unit 31, which receives an image of a product-related item from a portable terminal 10 requesting a display object; a product specification unit 32, which specifies a product corresponding to a product-related item based on a result of image identification processing of the image and on product data in a product database 21; a writer specification unit 35, which refers to a writer database 23 storing post data indicating comments of writers on products, and specifies one or more writers who have commented on a specified product; an object generation unit 36, which generates one or more display objects indicating one or more specified writers; and a transmission unit 37, which transmits the display objects to the portable terminal 10 in order to implement superimposed-display of the generated display objects on the screen of the portable terminal 10.
Abstract:
An on-board multibeam radar apparatus includes a plurality of beam elements that constitute an antenna transmitting a transmission wave and receiving an incoming wave reflected by and arriving from a target in response to the transmission wave, and a processing unit configured to apply a Fourier transformation to beam element data which are data of a received wave received through the plurality of beam elements based on the number of elements and the element interval of a desired virtual array antenna so as to create virtual array data, and to perform a predetermined process based on the created virtual array data.
Abstract:
According to embodiments, there is provided a radar apparatus including: a transmission antenna configured to transmit an electromagnetic wave; a reception antenna configured to receive an electromagnetic wave when the transmitted electromagnetic wave has been reflected by an object; a reception wave acquisition section configured to acquire the received electromagnetic wave at specific intervals in time; a reception power calculator configured to compute the power of the received electromagnetic wave as a function of the acquisition time number by the reception wave acquisition section; a representative point extractor configured to extract plural representative points from the function; and a determination section configured to determine whether or not the object is an overhead object positioned higher than the optical axis of the receiving antenna based on the representative points.
Abstract:
An on-board multibeam radar apparatus includes a plurality of beam elements that constitute an antenna transmitting a transmission wave and receiving an incoming wave reflected by and arriving from a target in response to the transmission wave, and a processing unit configured to apply a Fourier transformation to beam element data which are data of a received wave received through the plurality of beam elements based on the number of elements and the element interval of a desired virtual array antenna so as to create virtual array data, and to perform a predetermined process based on the created virtual array data.
Abstract:
An onboard radar apparatus includes a transmission wave generating unit configured to generate a transmission wave, a vertically polarized wave transmitting antenna configured to vertically polarize and transmit the transmission wave, a horizontally polarized wave transmitting antenna configured to horizontally polarize and transmit the transmission wave, a receiving antenna configured to receive a reflection wave, a switch control unit configured to perform a switching between the vertically polarized wave transmitting antenna and the horizontally polarized wave transmitting antenna, and a receiving unit configured to receive one of the reflection waves based on receiving levels of the reflection waves, which have been received by the receiving antenna before and after the switching is performed by the switch control unit.
Abstract:
An onboard radar apparatus includes a transmission wave generating unit configured to generate a transmission wave, a vertically polarized wave transmitting antenna configured to vertically polarize and transmit the transmission wave, a horizontally polarized wave transmitting antenna configured to horizontally polarize and transmit the transmission wave, a receiving antenna configured to receive a reflection wave, a switch control unit configured to perform a switching between the vertically polarized wave transmitting antenna and the horizontally polarized wave transmitting antenna, and a receiving unit configured to receive one of the reflection waves based on receiving levels of the reflection waves, which have been received by the receiving antenna before and after the switching is performed by the switch control unit.
Abstract:
According to embodiments, there is provided a radar apparatus including: a transmission antenna configured to transmit an electromagnetic wave; a reception antenna configured to receive an electromagnetic wave when the transmitted electromagnetic wave has been reflected by an object; a reception wave acquisition section configured to acquire the received electromagnetic wave at specific intervals in time; a reception power calculator configured to compute the power of the received electromagnetic wave as a function of the acquisition time number by the reception wave acquisition section; a representative point extractor configured to extract plural representative points from the function; and a determination section configured to determine whether or not the object is an overhead object positioned higher than the optical axis of the receiving antenna based on the representative points.
Abstract:
An on-board multibeam radar apparatus includes a plurality of beam elements that constitute an antenna transmitting a transmission wave and receiving an incoming wave being reflected and arriving from a target in response to the transmission wave, a control unit configured to select a beam element used for transmission and reception out of the plurality of beam elements so as to change a field of view, and a processing unit configured to apply a Fourier transformation to beam element data which are data of a received wave received through the beam element used for transmission and reception selected by the control unit based on the number of elements and the element interval of a desired virtual array antenna so as to create virtual array data, and to perform a predetermined process based on the created virtual array data.