Abstract:
A method analyzes a model of a balanced power distribution system by transforming a model of the balanced distribution system with zero impedance branches to an equivalent model of the balanced power distribution system with non-zero impedance branches. Decoupled power mismatch equations with second orders are generated for each bus in the equivalent model. Power mismatches are determined using the bus power flow equations. The power mismatches are compared to a predetermined threshold. Then, for each bus, solving iteratively, if the comparing is true, the power mismatch equations to obtain a bus voltage magnitude correction and a bus phase angle correction until the comparing is false.
Abstract:
A method for evaluating hepatocellular carcinoma in a subject is provided. In certain embodiments, the method comprises: a) obtaining a hepatocellular carcinoma protein marker profile for a sample obtained from the subject; and b) comparing the protein marker profile to a control profile.
Abstract:
A method determines voltages of buses of a power system. Values the voltages include a magnitude and a phase angle. The buses of the power system are grouped in a first area and a second area based on a type of measurement associated with each bus. The first area and the second area have at least one common bus, and wherein at least one bus in the first area is associated with a first type of measurement, and at least one bus in the second area is associated with a second type of measurement. Next, the method determines sequentially voltages of the buses of the first and the second areas.
Abstract:
A method determines voltages of buses of a power system. Values the voltages include a magnitude and a phase angle. The buses of the power system are grouped in a first area and a second area based on a type of measurement associated with each bus. The first area and the second area have at least one common bus, and wherein at least one bus in the first area is associated with a first type of measurement, and at least one bus in the second area is associated with a second type of measurement. Next, the method determines sequentially voltages of the buses of the first and the second areas.
Abstract:
A method for evaluating hepatocellular carcinoma in a subject is provided. In certain embodiments, the method comprises: a) obtaining a hepatocellular carcinoma protein marker profile for a sample obtained from the subject; and b) comparing the protein marker profile to a control profile.
Abstract:
Three phase power flow analysis of an unbalanced power distribution system decouples voltage changes resulting from nodal admittance matrix into one contribution from a real part, conductance matrix, and other contribution from an imaginary part, and a susceptance matrix. A first voltage change and second voltage change resulting from conductance and susceptance matrices are determined respectively. The voltages of a node of the power distribution system are determined as a combination of first and second voltages.
Abstract:
A method for a three phase power flow analysis of an ungrounded power distribution system partitions a topology of the power distribution system into a mainline system and a set of tap systems, wherein the mainline system is formed by mainline buses connecting a swing bus and a set of constant active power and voltage magnitude (PV) buses, wherein the tap system is formed by one or many tap buses, such that a root bus of each tap system corresponds to a mainline bus. Next, the method determines voltages of the mainline buses based on a function of a total load of each tap system; and determines voltages of tap buses based on a voltage of the corresponding root bus of the mainline and load of each tap bus.
Abstract:
Three phase power flow analysis of an unbalanced power distribution system decouples voltage changes resulting from nodal admittance matrix into one contribution from a real part, conductance matrix, and other contribution from an imaginary part, and a susceptance matrix. A first voltage change and second voltage change resulting from conductance and susceptance matrices are determined respectively. The voltages of a node of the power distribution system are determined as a combination of first and second voltages.
Abstract:
A method for a three phase power flow analysis of an ungrounded power distribution system partitions a topology of the power distribution system into a mainline system and a set of tap systems, wherein the mainline system is formed by mainline buses connecting a swing bus and a set of constant active power and voltage magnitude (PV) buses, wherein the tap system is formed by one or many tap buses, such that a root bus of each tap system corresponds to a mainline bus. Next, the method determines voltages of the mainline buses based on a function of a total load of each tap system; and determines voltages of tap buses based on a voltage of the corresponding root bus of the mainline and load of each tap bus.
Abstract:
A method analyzes a model of a balanced power distribution system by transforming a model of the balanced distribution system with zero impedance branches to an equivalent model of the balanced power distribution system with non-zero impedance branches. Decoupled power mismatch equations with second orders are generated for each bus in the equivalent model. Power mismatches are determined using the bus power flow equations. The power mismatches are compared to a predetermined threshold. Then, for each bus, solving iteratively, if the comparing is true, the power mismatch equations to obtain a bus voltage magnitude correction and a bus phase angle correction until the comparing is false.