Abstract:
A fan module suitable for an electronic apparatus is provided. The fan module includes a bottom plate, a top cover. a sidewall, a heat-dissipating fan and a housing. The sidewall is assembled between the top cover and the bottom plate. The sidewall, the top cover and the bottom plate together form an accommodating space. The heat-dissipating fan is disposed on the bottom plate and located in the accommodating space. The housing is stacked on the top cover.
Abstract:
A heat pipe structure including a pipe body and a working substance is provided. The pipe body has two closed ends opposite to each other, an inner surface, a compressed portion, and an expanded portion. The inner surface and the two closed ends form a cavity. The compressed portion includes a plurality of first grooves formed at the inner surface. Any one of the first grooves includes a first width. The expanded portion includes a plurality of second grooves formed at the inner surface. Any one of the second grooves includes a second width, and the first width is approximately equal to the second width. The working substance is contained in the cavity.
Abstract:
A heat dissipation module is suited for a portable electronic device. The module includes a first mesh, a housing and a fan, wherein the first mesh disposed at the bottom of the casing of the device has a plurality of first openings. The housing has an air inlet, a second mesh, a mounting space and an air outlet, wherein the second mesh disposed at the top of the housing has a plurality of second openings. The diameter of each of the second openings is smaller than that of the first openings. To satisfy the safety standard, the heat dissipation efficiency of this device can be improved by changing the size of these two openings. Furthermore, the first and second mesh are respectively formed with the bottom of the casing and the top of the housing together as an integral unit to reduce the production cost of the portable electronic device.
Abstract:
A method for controlling the fan speed by detecting different power supplies of a mobile electronic device is proposed. When an external power source is used for mobile electronic device and detected by the embedded controller, the first fan control table is used to control the fan speed to increase the heat dissipation capability of the mobile electronic device. When battery power is used as the power source and detected by the embedded controller, a second fan control table is used to control the fan speed to extend the battery life. The first fan control table and the second fan control table become the relation control table between the temperature of the processor and the fan speed or the relation fan control table between the temperature of the processor and the input voltage of the fan for controlling the fan speed according to the temperature of the processor.
Abstract:
A method for controlling the fan speed by detecting different power supplies of a mobile electronic device is proposed. When an external power source is used for mobile electronic device and detected by the embedded controller, the first fan control table is used to control the fan speed to increase the heat dissipation capability of the mobile electronic device. When battery power is used as the power source and detected by the embedded controller, a second fan control table is used to control the fan speed to extend the battery life. The first fan control table and the second fan control table become the relation control table between the temperature of the processor and the fan speed or the relation fan control table between the temperature of the processor and the input voltage of the fan for controlling the fan speed according to the temperature of the processor.
Abstract:
A fastening structure including a first housing, a substrate, a second housing, and a fastening component is provided. The first housing has a first boss with a first opening, and a sidewall of the first opening is made of metal. The substrate has a second opening. The second housing has a second boss with a third opening. One end of the fastening component passes through the third opening and is fastened in the first opening, and the other end of the fastening component is restricted in one end of the third opening to fasten the substrate between the first housing and the second housing. Both the metal sidewall and the sidewall of the fastening component therein do not contact the substrate.
Abstract:
A cooler module mounted on a CPU on a circuit board inside a computer is disclosed to include a mounting base frame, which is made of a thermal conductive material and has a heat-transfer zone disposed in contact with the CPU and two arms respectively extended from two sides of the heat-transfer zone and affixed to the circuit board and two eyelet lugs vertically extended from two sides of the distal end of one of the two arms, a heat pipe, which has one end supported on the heat-transfer zone of the mounting base frame, an elongated retaining member, which has two lugs disposed at one end thereof and respectively fastened to the eyelet lugs of the mounting base frame, and a buffer member fastened to the heat-transfer zone to hold down heat pipe on the heat-transfer zone.
Abstract:
A heat-dissipating device is adapted for use with a multi-layer circuit board having a grounding layer and that has an electronic component mounted thereon. The heat-dissipating device includes a heat-dissipating member, a grounding member and a connecting member. The heat-dissipating member is adapted to be disposed on a heat-radiating side of the electronic component. The grounding member includes a grounding tail and a grounding body connected to the grounding tail. The grounding tail is adapted to pass through the circuit board to connect electrically with the grounding layer and to dispose the grounding body between the heat-dissipating member and the circuit board. The connecting member interconnects the heat-dissipating member and the grounding member, and is adapted to be secured on the circuit board. The connecting member cooperates with the grounding member to make electrical connection between the heat-dissipating member and the grounding layer of the circuit board.
Abstract:
A heat pipe structure including a pipe body and a working substance is provided. The pipe body has two closed ends opposite to each other, an inner surface, a compressed portion, and an expanded portion. The inner surface and the two closed ends form a cavity. The compressed portion includes a plurality of first grooves formed at the inner surface. Any one of the first grooves includes a first width. The expanded portion includes a plurality of second grooves formed at the inner surface. Any one of the second grooves includes a second width, and the first width is approximately equal to the second width. The working substance is contained in the cavity.
Abstract:
A cooler module mounted on a CPU on a circuit board inside a computer is disclosed to include a mounting base frame, which is made of a thermal conductive material and has a heat-transfer zone disposed in contact with the CPU and two arms respectively extended from two sides of the heat-transfer zone and affixed to the circuit board and two eyelet lugs vertically extended from two sides of the distal end of one of the two arms, a heat pipe, which has one end supported on the heat-transfer zone of the mounting base frame, an elongated retaining member, which has two lugs disposed at one end thereof and respectively fastened to the eyelet lugs of the mounting base frame, and a buffer member fastened to the heat-transfer zone to hold down heat pipe on the heat-transfer zone.