Abstract:
The present invention relates to a method that obtains emissivity or reflectivity based on ratios of the brightness temperature measured by a satellite and the land surface temperature, calculates two reflectivity using polarizing features of a microwave according to surface characteristics, and measures a volumetric soil water content of a land surface considering that water has different physical characteristics from those of soil. In particular, it may be possible to measure volumetric soil water contents on territories of other countries as well as regions which have many limitations and troubles in direct measurement of the volumetric soil water contents. Accordingly, valuable materials in terms of nation economy may be produced together with substantial contribution to industrial fields that have direct effects on agriculture and disaster prevention.
Abstract:
Disclosed herein is a double winding type electrode assembly constructed in a structure in which a cathode and an anode are opposite to each other while a separator is disposed between the cathode and the anode, wherein the electrode assembly is manufactured by preparing a plurality of cell units, each cell unit having a cathode sheet and an anode sheet, of a predetermined size, wound, while a separator is disposed between the cathode sheet and the anode sheet, each cell unit being elliptical in section, and sequentially winding the cell units while arranging the cell units on a long separator sheet.
Abstract:
Disclosed herein is a double winding type electrode assembly constructed in a structure in which a cathode and an anode are opposite to each other while a separator is disposed between the cathode and the anode, wherein the electrode assembly is manufactured by preparing a plurality of cell units, each cell unit having a cathode sheet and an anode sheet, of a predetermined size, wound, while a separator is disposed between the cathode sheet and the anode sheet, each cell unit being elliptical in section, and sequentially winding the cell units while arranging the cell units on a long separator sheet.
Abstract:
Disclosed herein is a battery cell voltage balancing device for connecting two or more battery cells to one another in parallel so as to minimize a voltage difference between the respective battery cells, the battery cell voltage balancing device including an insulative main body having partitions, between which the two or more battery cells are mounted, respectively, configured in a structure in which the partitions are open upward, terminal connection parts disposed at opposite ends of the insulative main body for connecting cathodes and anodes of the battery cells mounted at the insulative main body to cathodes and anodes of neighboring battery cells mounted at the insulative main body, and an interval adjustment unit for variably adjusting an interval between the partitions in a state in which the battery cells are mounted between the partitions to achieve secure mounting of the battery cells between the respective partitions and electrical connection of electrode terminals of the respective battery cells to the terminal connection parts.
Abstract:
Disclosed herein is a voltage sensing member for sensing voltages of battery cells constituting a battery module, the voltage sensing member including (a) a pair of supporting parts, i.e., a front supporting part and a rear supporting part, mounted to a bottom of the battery module at regions (a front part and a rear part of the battery module) corresponding to electrode terminal connections of the battery cells, (b) a connection part for electrically interconnecting the front supporting part and the rear supporting part, (c) conductive sensing parts having one-side ends coupled to the corresponding supporting parts via wires, each of the conductive sensing parts having a larger contact surface than each of the wires, and (d) a connector mounted on the front supporting part or the rear supporting part for transmitting the sensed voltages of the battery cells to a battery control device, wherein the conductive sensing parts are connected to the electrode terminal connections of the battery cells in a surface contact manner.
Abstract:
Disclosed herein is a battery cell voltage balancing device for connecting two or more battery cells to one another in parallel so as to minimize a voltage difference between the respective battery cells, the battery cell voltage balancing device including an insulative main body having partitions, between which the two or more battery cells are mounted, respectively, configured in a structure in which the partitions are open upward, terminal connection parts disposed at opposite ends of the insulative main body for connecting cathodes and anodes of the battery cells mounted at the insulative main body to cathodes and anodes of neighboring battery cells mounted at the insulative main body, and an interval adjustment unit for variably adjusting an interval between the partitions in a state in which the battery cells are mounted between the partitions to achieve secure mounting of the battery cells between the respective partitions and electrical connection of electrode terminals of the respective battery cells to the terminal connection parts.
Abstract:
Disclosed herein is a voltage sensing member for sensing voltages of battery cells constituting a battery module, the voltage sensing member including (a) a pair of supporting parts, i.e., a front supporting part and a rear supporting part, mounted to a bottom of the battery module at regions (a front part and a rear part of the battery module) corresponding to electrode terminal connections of the battery cells, (b) a connection part for electrically interconnecting the front supporting part and the rear supporting part, (c) conductive sensing parts having one-side ends coupled to the corresponding supporting parts via wires, each of the conductive sensing parts having a larger contact surface than each of the wires, and (d) a connector mounted on the front supporting part or the rear supporting part for transmitting the sensed voltages of the battery cells to a battery control device, wherein the conductive sensing parts are connected to the electrode terminal connections of the battery cells in a surface contact manner.