摘要:
An improved approach is described for implementing transformations of data records in high concurrency environments. Each transformation is performed in parallel at the source when the data record is first generated. According to one approach for data integrity validation, record generators compute an integrity checksum for a newly generated record before copying into a data unit in shared memory. Subsequent generators may aggregate integrity checksums for data records into checksums for data units incrementally. This approach achieves end-to-end protection of data records against corruption using an efficient method of maintaining verifiable data integrity. In another approach, compression and encryption data transformations may be performed by themselves, or in combination with an integrity checksum transformation.
摘要:
Dirty data in a storage device is made current through rapid re-silvering, which uses a mirrored and up-to-date version of the dirty data from another storage device to recover the data. Because under rapid re-silvering cache metadata in volatile memory survives the failure of the cache, the cache metadata is used to determine which subset of data from the other storage device needs to be copied to the storage device being re-silvered. During re-silvering, cache metadata is used to determine which I/O requests from clients are requests for data that is not stale.
摘要:
Methods, computer-readable media, and computer systems are provided for initiating storage of data on multiple storage devices and confirming storage of the data after the data has been stored on one but not necessarily all of the devices. A storage server receives, from a client, a request to store data. In response to the request, the storage server initiates, in parallel, storage of the data on multiple storage systems. The storage server detects that the data has been stored on any one of the storage systems, such as an auxiliary system, and, in response, indicates, to the client, that the data has been stored. The storage server may flush or discard data on the auxiliary storage system upon detecting that the data has been successfully stored on a target storage system, where the data persists.
摘要:
A method and system is provided for measuring, guaranteeing, and reducing replication data lag time between a primary system and one or more standby systems. Each standby system determines the lag time between the generation of a consistent version of data on the primary system and the time that the consistent version is applied on the standby system. Applications can request and be guaranteed to receive data from a standby system that is identical to the state on the primary system at the time of the query, or lag the primary state only by a maximum tolerable amount. A standby system may also publish a service that guarantees a maximum lag time and withdraw the service offer when the actual lag time exceeds the guaranteed lag time.Implications for implementing synchronous and asynchronous replication as well as performance optimizations are also discussed.
摘要:
Techniques for enhanced content seek are described. In one embodiment, for example, an apparatus may comprise a processor circuit and a content management module, and the content management module may be operative on the processor circuit to receive an instruction to initiate a seek presentation mode for a content item, determine content description information for the content item, and generate seek presentation information comprising the content description information. In this manner, an improved seek presentation may be realized that provides descriptive information regarding portions of content as a seek is being performed through those portions of content, such that a user may be better able to identify a point at which a desired location within the content has been reached. Other embodiments are described and claimed.
摘要:
A method and apparatus for maintaining an item-to-node mapping among nodes in a distributed cluster is provided. Each node maintains locally-stored system-state information indicating that node's understanding of which master nodes are alive and dead. Instead of employing a global item-to-node mapping, each node acts upon a locally determined mapping based on its locally-stored system-state information. For any two nodes with the same locally-stored system-state information, the locally determined mapping is the same. A node updates its locally-stored system-state information upon detecting a node failure or receiving a message from another node indicating different locally-stored system-state information. The new locally-stored system-state information is transmitted on a need-to-know basis, and consequently nodes with different item-to-node mappings may operate concurrently. Mechanisms to avoid nodes assuming conflicting ownership of items are employed, thus allowing node failures to propagate via asynchronous messaging instead of requiring a cluster-wide synchronization event.
摘要:
An improved approach is described for implementing transformations of data records in high concurrency environments. Each transformation is performed in parallel at the source when the data record is first generated. According to one approach for data integrity validation, record generators compute an integrity checksum for a newly generated record before copying into a data unit in shared memory. Subsequent generators may aggregate integrity checksums for data records into checksums for data units incrementally. This approach achieves end-to-end protection of data records against corruption using an efficient method of maintaining verifiable data integrity. In another approach, compression and encryption data transformations may be performed by themselves, or in combination with an integrity checksum transformation.
摘要:
A method and apparatus for maintaining an item-to-node mapping among nodes in a distributed cluster is provided. Each node maintains locally-stored system-state information indicating that node's understanding of which master nodes are alive and dead. Instead of employing a global item-to-node mapping, each node acts upon a locally determined mapping based on its locally-stored system-state information. For any two nodes with the same locally-stored system-state information, the locally determined mapping is the same. A node updates its locally-stored system-state information upon detecting a node failure or receiving a message from another node indicating different locally-stored system-state information. The new locally-stored system-state information is transmitted on a need-to-know basis, and consequently nodes with different item-to-node mappings may operate concurrently. Mechanisms to avoid nodes assuming conflicting ownership of items are employed, thus allowing node failures to propagate via asynchronous messaging instead of requiring a cluster-wide synchronization event.
摘要:
Systems, methods, and other embodiments associated with detecting a node death in a clustered distributed system are described. In one embodiment, a method includes transmitting a ping message to a peer node in the network. If a reply to the ping message is not received from the peer node, a query is sent to table of port identifiers that lists ports in the cluster. In one embodiment, the query includes a port identifier associated with the peer node. The peer node is declared as inactive/dead when the query fails to locate a match in the table for the port identifier. When the query locates a match in the table for the port identifier, another ping message is periodically transmitted to the peer node.
摘要:
Dirty data in a storage device is made current through rapid re-silvering, which uses a mirrored and up-to-date version of the dirty data from another storage device to recover the data. Because under rapid re-silvering cache metadata in volatile memory survives the failure of the cache, the cache metadata is used to determine which subset of data from the other storage device needs to be copied to the storage device being re-silvered. During re-silvering, cache metadata is used to determine which I/O requests from clients are requests for data that is not stale.