摘要:
Embodiments of the present invention generally relate to a MEMS device that is anchored using the layer that is deposited to form the cavity sealing layer and/or with the layer that is deposited to form the pull-off electrode. The switching element of the MEMS device will have a flexible or movable portion and will also have a fixed or anchor portion that is electrically coupled to ground. The layer that is used to seal the cavity in which the switching element is disposed can also be coupled to the fixed or anchor portion of the switching element to anchor the fixed or anchor portion within the cavity. Additionally, the layer that is used to form one of the electrodes may be used to provide additional leverage for anchoring the fixed or anchor portion within the cavity. In either situation, the movement of the flexible or movable portion is not hindered.
摘要:
In a MEMS device, the manner in which the membrane lands over the RF electrode can affect device performance. Bumps or stoppers placed over the RF electrode can be used to control the landing of the membrane and thus, the capacitance of the MEMS device. The shape and location of the bumps or stoppers can be tailored to ensure proper landing of the membrane, even when over-voltage is applied. Additionally, bumps or stoppers may be applied on the membrane itself to control the landing of the membrane on the roof or top electrode of the MEMS device.
摘要:
A method and apparatus for maintaining an item-to-node mapping among nodes in a distributed cluster is provided. Each node maintains locally-stored system-state information indicating that node's understanding of which master nodes are alive and dead. Instead of employing a global item-to-node mapping, each node acts upon a locally determined mapping based on its locally-stored system-state information. For any two nodes with the same locally-stored system-state information, the locally determined mapping is the same. A node updates its locally-stored system-state information upon detecting a node failure or receiving a message from another node indicating different locally-stored system-state information. The new locally-stored system-state information is transmitted on a need-to-know basis, and consequently nodes with different item-to-node mappings may operate concurrently. Mechanisms to avoid nodes assuming conflicting ownership of items are employed, thus allowing node failures to propagate via asynchronous messaging instead of requiring a cluster-wide synchronization event.
摘要:
The present invention generally relates to the formation of a micro-electromechanical system (MEMS) cantilever switch in a complementary metal oxide semiconductor (CMOS) back end of the line (BEOL) process. The cantilever switch is formed in electrical communication with a lower electrode in the structure. The lower electrode may be either blanket deposited and patterned or simply deposited in vias or trenches of the underlying structure. The excess material used for the lower electrode is then planarized by chemical mechanical polishing or planarization (CMP). The cantilever switch is then formed over the planarized lower electrode.
摘要:
A method and apparatus for maintaining an item-to-node mapping among nodes in a distributed cluster is provided. Each node maintains locally-stored system-state information indicating that node's understanding of which master nodes are alive and dead. Instead of employing a global item-to-node mapping, each node acts upon a locally determined mapping based on its locally-stored system-state information. For any two nodes with the same locally-stored system-state information, the locally determined mapping is the same. A node updates its locally-stored system-state information upon detecting a node failure or receiving a message from another node indicating different locally-stored system-state information. The new locally-stored system-state information is transmitted on a need-to-know basis, and consequently nodes with different item-to-node mappings may operate concurrently. Mechanisms to avoid nodes assuming conflicting ownership of items are employed, thus allowing node failures to propagate via asynchronous messaging instead of requiring a cluster-wide synchronization event.
摘要:
Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such as anesthesia gases, CO2 and the like in human breath. An integrated monitor system and disposable sensor unit is described which permits a number of different anesthetic agents to be identified and monitored, as well as concurrent monitoring of other breath species, such as CO2. The sensor unit may be configured to be compact, light weight, and inexpensive. Wireless embodiments provide such enhancements as remote monitoring. A simulator system for modeling the contents and conditions of human inhalation and exhalation with a selected mixture of a treatment agent is also described, particularly suited to the testing of sensors to be used in airway sampling.
摘要:
An electronic system and method for detecting analytes, such as carbon dioxide, is provided, using an improved nanostructure sensor (CO2 sensor). The CO2 sensor may comprise a substrate and a nanostructure, such as a one or more carbon nanotubes disposed over the substrate (e.g., as a network). One or more conductive elements may electrically communicate with the nanostructure. A counter or gate electrode may be positioned adjacent the nanostructure. A functionalization material reactive with carbon dioxide may be included, either disposed in contact with the nanostructure or isolated by a dielectric. The sensor may be connected to a circuit responsive to changes in CO2 concentration in the environment. Embodiments are described of medical sensing systems including one or more CO2 sensors. One embodiment comprises a breath sampling cannula which is connected to a sensor unit. In an alternative, the cannula permits supplemental oxygen to be administered, while recovering and measuring analytes in breath samples. The cannula may connect to a portable processor-display unit for monitoring one or more analytes, such as CO2. Another embodiment includes a cannula configured for the monitoring of sleep disorders, such as apnea, comprising one or more sensors disposed adjacent a breath sampling channel, optionally including flow rate or other sensors. The sensors may be connected by wired or wireless links for to a processor/input/display unit. Any of the embodiments may include filters, selectively permeable membranes, absorbents, and the like to precondition the breath sample, may be configured to include complementary chemistry measurements.
摘要:
A method and mechanism is disclosed for implementing transaction logging in a database system. In-memory undo records are maintained to log undo information for the database system. Redo records are batch processed, with multiple redo records for a transaction stored on disk at commit time.
摘要:
A ferroelectric memory 636 includes a group of memory cells (645, 12, 201, 301, 401, 501), each cell having a ferroelectric memory element (44, 218, etc.), a drive line (122, 322, 422, 522 etc.) on which a voltage for writing information to the group of memory cells is placed, a bit line (25, 49, 125, 325, 425, 525, etc.) on which information to be read out of the group of memory cells is placed, a preamplifier (20, 42, 120, 320, 420, etc.) between the memory cells and the bit line, a set switch (14, 114, 314, 414, 514, etc.) connected between the drive line and the memory cells, and a reset switch (16, 116, 316, 416, 516, etc.) connected to the memory cells in parallel with the preamplifier. The memory is read by placing a voltage less than the coercive voltage of the ferroelectric memory element across a memory element. Prior to reading, noise from the group of cells is discharged by grounding both electrodes of the ferroelectric memory element.
摘要:
In the manufacture of an integrated circuit memory cell, a strontium bismuth tantalate or strontium bismuth tantalum niobate thin film layer (50) is deposited on a substrate (28, 49) and a carefully controlled UV baking process is performed on the strontium bismuth tantalate layer (50) prior to the deposition of an ultra-thin bismuth tantalate layer (51). A second electrode (52) is formed on top of the ultra-thin bismuth tantalate layer (51).