Abstract:
An emulsion aggregation toner formulation for electrophotography and a method for preparation thereof. The emulsion aggregation toner formulation includes a polyester resin emulsion formed using an extruded polyester binder resin having a broad molecular weight distribution. The extruded polyester binder resin is formed using a plurality of polyester binder resins. Further, the emulsion aggregation toner formulation comprises at least one colorant dispersion and a wax dispersion.
Abstract:
The present disclosure relates to chemically processed toner. The toner may be prepared by an emulsion aggregation method by forming a polyester dispersion wherein the polyester has an acid value of about 5 to about 50 and a particle size of about 50 to about 500 nanometers. The polyester dispersion may then be combined with a pigment and/or release agent dispersion wherein the pigment and/or release agent dispersion may contain a dispersant. This may then be followed by heating and recovering agglomerated toner particles wherein the toner particles may have a mean particle size of about 3 to about 15 microns and an average degree of circularity of between about 0.90 to about 1.0.
Abstract:
The present invention provides a pigment ink formulation containing a wax emulsion is disclosed. The wax emulsion comprises a specific wax and surfactant combination. In particular, the wax comprises a linear polyethylene wax and the surfactant is an alkyl ether carboxylate. The wax emulsion can be made by any process for preparing emulsions used by those skilled in the art such as typical homogenization methods. Applicants have discovered that such a wax emulsion can not only improve the scratch resistance of pigmented ink, but also improve other handling problems such as scuff and smear.
Abstract:
The present invention provides a pigment ink formulation containing a wax emulsion is disclosed. The wax emulsion comprises a specific wax and surfactant combination. In particular, the wax comprises a linear polyethylene wax and the surfactant is an alkyl ether carboxylate. The wax emulsion can be made by any process for preparing emulsions used by those skilled in the art such as typical homogenization methods. Applicants have discovered that such a wax emulsion can not only improve the scratch resistance of pigmented ink, but also improve other handling problems such as scuff and smear.
Abstract:
A film interactive touchpad for control of home systems. A touchscreen defined by a glass panel and polyester film defines active areas responsive to contact. Multiple, customizable and interchangeable templates correspond with multiple levels of functionality and define input and control buttons corresponding to active areas of the touchpad. A display such as an organic light emitting diode (OLED) provides interactive, color feedback. The touchscreen has a hinged connection to the touchpad and is pivotable to an open position to permit insertion and removal of the overlay templates, and is surrounded by a trim ring dam to prevent moisture intrusion. A light sensor is provided for detecting the ambient light level and adjusting the intensity of a backlight for faceplates of any color.
Abstract:
A film interactive touchpad for control of home systems. A touchscreen defined by a glass panel and polyester film defines active areas responsive to contact. Multiple, customizable and interchangeable templates correspond with multiple levels of functionality and define input and control buttons corresponding to active areas of the touchpad. A display such as an organic light emitting diode (OLED) provides interactive, color feedback. The touchscreen has a hinged connection to the touchpad and is pivotable to an open position to permit insertion and removal of the overlay templates, and is surrounded by a trim ring dam to prevent moisture intrusion. A light sensor is provided for detecting the ambient light level and adjusting the intensity of a backlight for faceplates of any color.
Abstract:
A hyper-branched polyester and a method of making the same having a tri-functional monomer A3, a di-functional monomer B2 and a mono-functional monomer C1 having a monomer ratio of A3:B2:C1 from about 1:0.2:2 to about 1:1.4:0.2 for use in a chemically processed electrophotographic toner providing a lower fusing temperature. In one form, the hyper-branched polyester includes a tri-hydroxy monomer, a di-acid and its derivatives, and a mono-acid and its derivatives. In other forms, a substituted anhydride and a long chain hydrocarbon carboxylic acid and its derivatives may also be included in the di-functional monomer.
Abstract:
A hyper-branched polyester and a method of making the same having a tri-functional monomer A3, a di-functional monomer B2 and a mono-functional monomer C1 having a monomer ratio of A3:B2:C1 from about 1:0.2:2 to about 1:1.4:0.2 for use in a chemically processed electrophotographic toner providing a lower fusing temperature. In one form, the hyper-branched polyester includes a tri-hydroxy monomer, a di-acid and its derivatives, and a mono-acid and its derivatives. In other forms, a substituted anhydride and a long chain hydrocarbon carboxylic acid and its derivatives may also be included in the di-functional monomer.
Abstract:
An emulsion aggregation toner formulation for electrophotography and a method for preparation thereof. The emulsion aggregation toner formulation includes a polyester resin emulsion formed using an extruded polyester binder resin having a broad molecular weight distribution. The extruded polyester binder resin is formed using a plurality of polyester binder resins. Further, the emulsion aggregation toner formulation comprises at least one colorant dispersion and a wax dispersion.
Abstract:
The present disclosure relates to chemically processed toner. The toner may be prepared by an emulsion aggregation method by forming a polyester dispersion wherein the polyester has an acid value of about 5 to about 50 and a particle size of about 50 to about 500 nanometers. The polyester dispersion may then be combined with a pigment and/or release agent dispersion wherein the pigment and/or release agent dispersion may contain a dispersant. This may then be followed by heating and recovering agglomerated toner particles wherein the toner particles may have a mean particle size of about 3 to about 15 microns and an average degree of circularity of between about 0.90 to about 1.0.