Abstract:
Generally speaking, pursuant to the various embodiments, pre-allocation of resources in a RAN of a communication system is performed. A system element having an application function determines, for a set of user equipment (UE), pre-allocation information used to select a set of cells in the RAN to which the set of UE will connect for exchanging data. The element sends a request to establish a bearer to an evolved packet core (EPC), wherein the request includes the pre-allocation information. The determining and sending actions are performed prior to one or more of the UE in the set of UE connecting to the set of cells. The EPC processes the request and returns a response to the system element, which identifies that a bearer for unicast and/or group communications has been established.
Abstract:
An information distribution device performs a method for selectively distributing media associated with an incident to a plurality of responders assigned to the incident. The method includes receiving, at the information distribution device, an incident information bundle comprising media inputs associated with the incident. For each responder in the plurality of responders assigned to the incident, the information distribution device: determines a set of roles for the responder; selects a set of filtering templates designed based on the set of roles; applies the set of filtering templates to the information bundle to generate a responder information bundle that includes a subset of the media inputs that is customized to the set of roles for the responder; and delivers the responder information bundle to the responder.
Abstract:
Methods for informing a mobile device of adjacent sites in a RF communication system wherein the RF communication system comprises a first network and a second network are disclosed. A mobile device in the first network of the RF communication system updates a signaling gateway with position information of the mobile device wherein the signaling gateway interfaces between the first network and the second network and receives a list of adjacent sites in the second network from the signaling gateway.
Abstract:
A method for controlling and managing individual directed sessions between at least two endpoints in a communications system. The method including the steps of: intercepting a first message sent from an initiating endpoint via application layer routing to at least one other endpoint requesting an individual directed session; communicating the requested individual directed session to a service entity for determining the state of the session as a function of communication system resources and capabilities and resources of the endpoints to be included in the requested session, and if the requested individual directed session is accepted determining a set of corresponding session parameters; and communicating the state of the requested individual session to the initiating endpoint via application layer routing, and if the requested session is accepted also communicating the state of the session the at least one other endpoint via application layer routing.
Abstract:
A general-purpose data terminal (242), such as a personal computer, portable computer, notebook computer, personal intelligent communicator, portable wireless terminal and the like employs a radio frequency (RF) modem (408) and is programmed to function as a two-way acknowledge back pager. The general purpose data terminal (242) maintains a table listing (600) of caller identification information and presents this information to the device user upon receipt of a page (300) from an identifiable caller. The device user may respond to the page by selecting one of a plurality of user definable responses to be transmitted back to the caller. If no response is selected the caller will receive a message informing them of the paged party's unavailability.
Abstract:
In a communications system having at least one service entity and a plurality of endpoints each including a logical entity and a terminal, a method facilitates a session between at least two of the endpoints in the system. The method includes: receiving a first message having information that includes a request for a session between a first endpoint that includes a non-dispatch terminal and at least one other endpoint; detecting that the first endpoint includes a non-dispatch terminal as a function of the first endpoint being unable to perform at least one function; and causing the at least one function to be performed on behalf of the first endpoint by the at least one service entity to facilitate the session between the first endpoint and the at least one other endpoint.
Abstract:
An information distribution device performs a method for selectively distributing media associated with an incident to a plurality of responders assigned to the incident. The method includes receiving, at the information distribution device, an incident information bundle comprising media inputs associated with the incident. For each responder in the plurality of responders assigned to the incident, the information distribution device: determines a set of roles for the responder; selects a set of filtering templates designed based on the set of roles; applies the set of filtering templates to the information bundle to generate a responder information bundle that includes a subset of the media inputs that is customized to the set of roles for the responder; and delivers the responder information bundle to the responder.
Abstract:
A method and apparatus for indicating an expected level of quality in a private Push To Talk (PTT) network are disclosed. The method and apparatus receive at least one of an affiliation message and a talkgroup call request for a first subscriber unit of the private PTT network wherein a talkgroup is associated with at least one of the private PTT network, another PTT network, and a public network. The method and system determine an expected level of quality for the talkgroup and send the determined expected level of quality to the subscriber unit.
Abstract:
A wireless communication system 200 comprises a connectionless packet network 201 coupled to a plurality of sites 203–208. Upon a first communication unit (213) initiating a call request for a 2-party call with a second communication unit (215), a call server 235 identifies respective multicast IP addresses (MC1, MC2) associated with the source and target. If the first communication unit 213, or its associated site (205) desires to send payload to the second communication unit 215, it addresses the payload to the multicast IP address (MC2) of the second communication unit, and the second communication unit 215, or its associated site 206 joins the multicast address MC2 to receive the payload. Conversely, if the second communication unit 215, or its associated site (206) desires to send payload to the first communication unit 213, it addresses the payload to the multicast IP address (MC1) of the first communication unit, and the first communication unit 213, or its associated site 205 joins the multicast address MC1 to receive the payload.
Abstract:
A wireless communication system 200 comprises a connectionless packet network 201 coupled to a plurality of sites 203-208 that are in wireless communication with a plurality of subscriber units 210-217 logically arranged into a plurality of talk groups having corresponding talk group identifications. In one embodiment, each site maintains mappings 220-225 of at least one multicast address to at least one talk group identification. In another embodiment, individual subscriber units maintain such mappings 320. When a subscriber unit affiliates with a given site and talk group (501, 601), the site identifies a multicast address corresponding to the talk group. Based on the multicast address, the site can participate in traffic targeted for the multicast address and, consequently, for the talk group. In this manner, mobility Processing is decentralized, system calability is improved and call setup delays are minimized.