Abstract:
A vehicle wheel cover retention system wherein the outboard tire bead seat retaining flange of the associated wheel includes a unique construction for securing a wheel cover to the wheel. In particular, the vehicle wheel includes a disc which defines an outboard facing wheel surface and includes an outboard tire bead seat retaining flange. The outboard tire bead seat retaining flange includes an outer surface having a circumferential, radially inwardly facing groove formed therein. A relatively thin wheel cover (which may or may not conform to the exact contour of the disc) covers at least a portion of the outboard facing wheel disc surface. In particular, the wheel cover includes an outer annular lip which extends into the groove.
Abstract:
A vehicle wheel cover retention system wherein the outboard tire bead seat retaining flange of the associated wheel includes a unique construction for securing a wheel cover to the wheel. In particular, the vehicle wheel includes a disc which defines an outboard facing wheel surface and includes an outboard tire bead seat retaining flange. The outboard tire bead seat retaining flange includes an outer surface having a circumferential, radially inwardly facing groove formed therein. A relatively thin wheel cover (which may or may not conform to the exact contour of the disc) covers at least a portion of the outboard facing wheel disc surface. In particular, the wheel cover includes an outer annular lip which extends into the groove.
Abstract:
An improved vehicle wheel cover retention system and method for producing the same includes a wheel disc and a wheel cover secured thereto. The wheel disc defines an outboard facing wheel surface and includes an outboard tire bead seat retaining flange. The outboard bead seat retaining flange includes an outer peripheral end and an inner surface having at least one annular groove formed therein. The wheel cover covers at least a portion of the outboard facing wheel surface and the entire portion of the outer peripheral end of the outboard bead seat retaining flange, and includes an outer end. The wheel cover is secured to the wheel disc by an adhesive/sealant. In particular, the adhesive/sealant is disposed in the annular groove to secure the outer end of the wheel cover to the outer peripheral end of the wheel disc and to provide a seal to prevent water, mud, salt and other debris from entering between the outer end of the wheel cover and the outer peripheral end of the wheel disc.
Abstract:
This invention relates to a method for producing a full face vehicle wheel and comprises the steps of: (a) providing a rim including an inboard tire bead seat retaining flange, an inboard tire bead seat, a well portion, an outboard tire bead seat, the inboard tire bead seat retaining flange including an outer surface, the inboard tire bead seat including an outer surface, an the outboard tire bead seat including an outer surface; (b) providing a disc including a generally centrally located inner wheel mounting portion and an outer annular portion, the outer annular portion including an inner surface and an outer surface, the inner wheel mounting portion including at least one of a fully formed center pilot hole and a plurality of fully formed lug bolt mounting holes, the center pilot hole defining a pilot hole axis and each of the lug bolt holes defining a lug bolt hole axis; (c) providing a wheel fixture tooling assembly for supporting the rim and the disc relative to one another, the wheel fixture tooling assembly operative to locate the rim on the outer surfaces of the inboard and outboard tire bead seats whereby the inboard and outboard tire bead seats are located relative to the axis of the center pilot hole and the axis of the lug bolt holes; and (d) subsequent to step (c), securing the wheel disc to the wheel rim by a weld.
Abstract:
An improved vehicle wheel cover retention system and method for producing the same includes a wheel disc and a wheel cover secured thereto. The wheel disc defines an outboard facing wheel surface and includes an outboard tire bead seat retaining flange. The outboard bead seat retaining flange includes an outer peripheral end and an inner surface having at least one annular groove formed therein. The wheel cover covers at least a portion of the outboard facing wheel surface and the entire portion of the outer peripheral end of the outboard bead seat retaining flange, and includes an outer end. The wheel cover is secured to the wheel disc by an adhesive/sealant. In particular, the adhesive/sealant is disposed in the annular groove to secure the outer end of the wheel cover to the outer peripheral end of the wheel disc and to provide a seal to prevent water, mud, salt and other debris from entering between the outer end of the wheel cover and the outer peripheral end of the wheel disc.
Abstract:
An improved vehicle wheel cover retention system and method for producing the same wherein the wheel includes a disc defining an outboard facing wheel surface and including an outboard tire bead seat retaining flange. The flange includes an outer surface having a circumferential, radially inwardly facing groove formed therein. The groove is defined by a generally axially extending first surface and a second surface angled relative to the first surface. The wheel further includes a wheel cover covering at least a portion of the outboard facing wheel surface. The cover includes an outer annular lip which extends into the groove and is positioned adjacent the first surface. The groove and the lip have a configuration which enables the lip to spring outwardly into the groove when the cover is pressed on the disc. The method for producing the vehicle wheel includes the the steps of: (a) providing a disc defining an outboard facing wheel surface and including an outboard tire bead seat retaining flange, the outboard bead seat retaining flange including an outer surface having a circumferential, radially inwardly facing groove formed therein, the groove defining an inner diameter; (b) providing a wheel cover including an outer annular lip which defines an outer diameter which generally corresponds to the inner diameter of the groove; and (c) moving the disc and the cover toward one another whereby the wheel cover initials deflects inwardly and then expands outwardly into the groove to secure the wheel cover to the disc.
Abstract:
This invention relates to an improved air operated fluid control valve which tends to inhibit or impede the travel of a fluid to the air controlled side of the control valve. The air operated fluid control valve includes a control valve having a valve body provided with at least one fluid inlet port and at least one fluid outlet port, at least one air inlet port and at least one air outlet port, and a piston assembly selectively controlled by the air inlet and outlet ports so as to regulate the flow of a fluid through the valve body from the at least one fluid inlet port to the at least one fluid outlet port. According to one preferred embodiment of this invention, the control valve includes at least one shield member carried by piston assembly which is operative to inhibit the travel of a fluid from a fluid side of the control valve into an air controlled side of the control valve.
Abstract:
A vehicle wheel cover retention system wherein the outboard tire bead seat retaining flange of the associated wheel includes a unique construction for securing a wheel cover to the wheel. In particular, the vehicle wheel includes a disc which defines an outboard facing wheel surface and includes an outboard tire bead seat retaining flange. The outboard tire bead seat retaining flange includes an outer surface having a circumferential, radially inwardly facing groove formed therein. A relatively thin wheel cover (which may or may not conform to the exact contour of the disc) covers at least a portion of the outboard facing wheel disc surface. In particular, the wheel cover includes an outer annular lip which extends into the groove.
Abstract:
An improved vehicle wheel cover retention system and method for producing the same wherein the wheel includes a disc defining an outboard facing wheel surface and including an outboard tire bead seat retaining flange. The flange includes an outer surface having a circumferential, radially inwardly facing groove formed therein. The groove is defined by a generally axially extending first surface and a second surface angled relative to the first surface. The wheel further includes a wheel cover covering at least a portion of the outboard facing wheel surface. The cover includes an outer annular lip which extends into the groove and is positioned adjacent the first surface. The groove and the lip have a configuration which enables the lip to spring outwardly into the groove when the cover is pressed on the disc. The method for producing the vehicle wheel includes the the steps of: (a) providing a disc defining an outboard facing wheel surface and including an outboard tire bead seat retaining flange, the outboard bead seat retaining flange including an outer surface having a circumferential, radially inwardly facing groove formed therein, the groove defining an inner diameter; (b) providing a wheel cover including an outer annular lip which defines an outer diameter which generally corresponds to the inner diameter of the groove; and (c) moving the disc and the cover toward one another whereby the wheel cover initials deflects inwardly and then expands outwardly into the groove to secure the wheel cover to the disc.
Abstract:
An improved method for forming a vehicle wheel wherein the inboard and outboard tire bead seat retaining flanges are precisely oriented and located relative to an inboard mounting surface of the disc, and the inboard and outboard tire bead seat surfaces are precisely oriented and located relative to a wheel axis includes the steps of steps of: (a) providing a rim defining a rim axis and including at least an inboard portion and an outboard portion; (b) providing a disc defining a disc axis and including at least an inner annular wheel mounting portion and an outer annular portion, the wheel mounting portion defining an inboard mounting surface and having a centrally located pilot hole formed therethrough; (c) positioning the rim and disc together in generally coaxial relationship; (d) simultaneously with step (c), joining the outer annular portion of the disc to the rim by welding to produce a partially-formed wheel assembly defining a wheel axis; (e) subsequent to step (d), forming an inboard tire bead seat retaining flange, an outboard tire bead seat retaining flange, an inboard tire bead seat, and an outboard tire bead seat of the wheel to locate the inboard and outboard tire bead seat retaining flanges a predetermined first and second lateral distances, respectively, relative to the inboard mounting surface of the disc and in a parallel relationship therewith, and to locate the inboard and outboard tire bead seats a predetermined first and second radial distances, respectively, relative to the wheel axis and in a concentric relationship with the wheel axis.