Abstract:
A circuit breaker panel includes a number of circuit breaker modules each having a number of connectors, a plurality of circuit breakers and a circuit structure supporting the circuit breakers and electrically interconnecting the circuit breakers with the number of connectors. The panel also includes a monitoring module having a connector and a monitoring circuit to monitor at least one line voltage and, for each of the circuit breakers, at least one load voltage. The panel further includes a frame having a first connector for the monitoring module connector, a number of second connectors for the circuit breaker module connectors, and a number of third connectors for outputs from the circuit breaker modules. Conductors are connected to the connectors. Any of the monitoring module and the number of circuit breaker modules can be installed into or removed from the frame without change to the conductors.
Abstract:
A circuit interrupter includes a housing having a molded case made of liquid crystal polymer. Separable contacts are disposed within the housing. An operating mechanism is disposed within the housing and is structured to open and close the separable contacts. A trip mechanism is disposed within the housing and is structured to cooperate with the operating mechanism to trip open the separable contacts. The trip mechanism includes an electronic trip circuit and a rigid, conductive base providing a ground to the electronic trip circuit. The rigid, conductive base is insert molded to a portion of the molded case.
Abstract:
A circuit interrupter includes a housing having a molded case made of liquid crystal polymer. Separable contacts are disposed within the housing. An operating mechanism is disposed within the housing and is structured to open and close the separable contacts. A trip mechanism is disposed within the housing and is structured to cooperate with the operating mechanism to trip open the separable contacts. The trip mechanism includes an electronic trip circuit and a rigid, conductive base providing a ground to the electronic trip circuit. The rigid, conductive base is insert molded to a portion of the molded case.
Abstract:
A system is for an aircraft including a plurality of rows of seats. The system includes a plurality of monitors, a plurality of arc fault circuit interrupters each of which includes three poles having a line terminal and a load terminal. Each of a plurality of electronic enclosures is capable of being energized from a corresponding one of the load terminals of a corresponding one of the poles of a corresponding one of the AFCIs. A panel holds the AFCIs. A single-phase power source powers the line terminals of the poles of the AFCIs. Each of the poles corresponds to one row of the aircraft. Each of the electronic enclosures corresponds to one of a plurality of zones. Three of the rows are disposed in each of the zones. One of the AFCIs is associated with a corresponding one of the zones.
Abstract:
A circuit breaker assembly includes a housing, an electrical bus structure within the housing, a number of first plug-in members coupled to the bus structure, and a number of insulative retainers coupled to the bus structure. A corresponding one of the number of insulative retainers is operatively associated with a corresponding number of the number of first plug-in members. Each of a number of circuit breakers includes a manual operator and a number of second plug-in members disposed opposite the manual operator. The number of second plug-in members electrically engage a number of the number of first plug-in members. The corresponding one of the number of insulative retainers is disposed about the corresponding number of the number of first plug-in members, in order to insulate the corresponding number of the number of first plug-in members, and to retain the number of second plug-in members.
Abstract:
A circuit breaker assembly includes a housing, an electrical bus structure within the housing, a number of first plug-in members coupled to the bus structure, and a number of insulative retainers coupled to the bus structure. A corresponding one of the number of insulative retainers is operatively associated with a corresponding number of the number of first plug-in members. Each of a number of circuit breakers includes a manual operator and a number of second plug-in members disposed opposite the manual operator. The number of second plug-in members electrically engage a number of the number of first plug-in members. The corresponding one of the number of insulative retainers is disposed about the corresponding number of the number of first plug-in members, in order to insulate the corresponding number of the number of first plug-in members, and to retain the number of second plug-in members.
Abstract:
A circuit breaker assembly includes a housing, an electrical bus structure coupled to the housing, and a number of first plug-in members coupled to the electrical bus structure. A number of circuit breakers include a first surface and a second plug-in member disposed opposite the first surface. The second plug-in member of each of the number of circuit breakers is mated with a corresponding one of the number of first plug-in members. A plate member is removably coupled to the housing. The plate member includes a first surface and an opposite second surface. The first surface of the number of circuit breakers engages the opposite second surface of the plate member in order to maintain mating of each of the number of circuit breakers with the corresponding one of the number of first plug-in members.
Abstract:
A tester for in situ testing of a plurality of circuit breakers having a range of rated currents and multiple trip functions, includes a plurality of power resistors of known impedance, an electronic switch associated with each power resistor connecting the resistor in series with the load terminal of the circuit breaker under test, and a controller that turns on a number of the switches selected to collectively draw through the associated power resistors a test current that is a function of the rated current and sufficient to trip the circuit breaker within a selected time window. Turn on of the electronic switches is also controlled to generate a current waveform appropriate for the trip function being tested. In a self test mode, the value of each of the power resistors is verified as being within limits.
Abstract:
A thermally managed electromagnetic switching device (2) is provided that includes a current carrying component set (4) switchable between a closed, current carrying state and an open, current interrupting state. A thermally dissipating component set (6) functionally supports and electrically isolates the current carrying component set (4) in the open state. The thermally dissipating component set (6) includes at least in part a thermally conductive polymer and is cooperatively configured to transfer heat away from the current carrying component set (4) in the closed state to dissipate thermal energy.
Abstract:
A thermally managed electromagnetic switching device (2) is provided that includes a current carrying component set (4) switchable between a closed, current carrying state and an open, current interrupting state. A thermally dissipating component set (6) functionally supports and electrically isolates the current carrying component set (4) in the open state. The thermally dissipating component set (6) includes at least in part a thermally conductive polymer and is cooperatively configured to transfer heat away from the current carrying component set (4) in the closed state to dissipate thermal energy.