Abstract:
The present invention provides in some embodiments, an endotracheal tube with subglottic secretion suction and a detachable suction line. The endotracheal tube is an elongate tube having an outer wall defining an elongate central lumen and an elongate suction lumen. The outer wall also defines an opening to the suction lumen near a distal end of the endotracheal tube An inflatable cuff is attached near a distal end of the elongate tube. The shoulder of the inflatable cuff is inverted in order to increase the diameter of the cuff from its distal end to its proximal end. A diffuser cap is positioned over the opening to the suction lumen and defines a fluid flow path for secretions into the suction lumen through the opening to the suction lumen.
Abstract:
A water dissipation device for removing water vapor or moisture from a breathing circuit is provided, including an upper lid portion, an entry port and an exit port. An outer cover structure extends from the upper lid portion to define an enclosed volume. An inner frame extends from the upper lid portion inside the outer cover structure. The outer cover structure includes a first layer of water or moisture wicking material and a second layer of water vapor breathable medium, and has an inner surface area bounding an inner flow space such that water vapor or moisture can permeate from the inner flow space through the outer cover structure out of device. The device can include an inner cup structure extending from the upper lid portion into the enclosed volume to displace the enclosed volume and define and bound a portion of the inner flow space and compressible volume therein.
Abstract:
Apparatus for monitoring particulate material in a fluid comprising a passageway (17), through which fluid to be monitored is passed, at least a portion (24) of the boundary of the passageway (17) being translucent to enable radiation to pass through that portion (24). A camera (40) is arranged to receive such radiation and is constructed to generate electrical signals representative of the images it receives. Image analysis means (57) are connected to receive those electrical signals and to provide data from them relating to the particulate material contained within the fluid.
Abstract:
A passive thermal control blanket and a method for its manufacture, the blanket including a plastic substrate on which is deposited a film that is a homogeneous mixture of silicon and germanium, thereby combining the excellent reflective and electrostatic discharge properties of germanium with the superior adhesion and corrosion resistance properties of silicon. The uniform mixture is preferably obtained by sputtering the two materials simultaneously onto the substrate, using either separate targets, a single mosaic target, or a single composite target.
Abstract:
The present invention provides in some embodiments, an endotracheal tube with subglottic secretion suction and a detachable suction line. The endotracheal tube is an elongate tube having an outer wall defining an elongate central lumen and an elongate suction lumen. An inflatable cuff is attached near a distal end of the elongate tube. The shoulder of the inflatable cuff is inverted in order to increase the diameter of the cuff from its distal end to its proximal end. The endotracheal tube also includes a connector to couple the suction lumen to a source of suction to remove subglottic secretions from the area above the cuff.
Abstract:
An embodiment in accordance with the present invention provides a water dissipation device to remove water vapor from a humidified gas traveling through a breathing circuit between a patient and a ventilator, or a ventilator and a patient. The present invention includes a water dissipation device having a housing defining entry and exit ports for coupling to the breathing circuit and a breathable medium permeable to water vapor and impermeable to liquid water bacteria, viruses and other gases enclosed within said housing.
Abstract:
The present invention provides in some embodiments, an endotracheal tube with subglottic secretion suction and a detachable suction line. The endotracheal tube is an elongate tube having an outer wall defining an elongate central lumen and an elongate suction lumen. An inflatable cuff is attached near a distal end of the elongate tube. The shoulder of the inflatable cuff is inverted in order to increase the diameter of the cuff from its distal end to its proximal end. The endotracheal tube also includes a connector to couple the suction lumen to a source of suction to remove subglottic secretions from the area above the cuff.
Abstract:
A water dissipation device for removing water vapor or moisture from a breathing circuit is provided, including an upper lid portion, an entry port and an exit port. An outer cover structure extends from the upper lid portion to define an enclosed volume. An inner frame extends from the upper lid portion inside the outer cover structure. The outer cover structure includes a first layer of water or moisture wicking material and a second layer of water vapor breathable medium, and has an inner surface area bounding an inner flow space such that water vapor or moisture can permeate from the inner flow space through the outer cover structure out of device. The device can include an inner cup structure extending from the upper lid portion into the enclosed volume to displace the enclosed volume and define and bound a portion of the inner flow space and compressible volume therein.
Abstract:
A water dissipation device for a breathing circuit is provided, including a bucket-shaped hollow composite structure having walls made of a first inner layer made of water vapor wicking material, and a second outer layer of a water vapor breathable medium surrounding the first inner layer. The device defines a flow space surrounded by the composite structure to provide a superior way of removal of moisture or water vapor from a breathing circuit, due to the greater surface area of flow spaces bounded by a water vapor breathable medium and the use of a water vapor wicking material and relatively long dwell times and flow paths through the device. The result is that when the device is connected to a breathing circuit, rainout or condensation in the breathing tube and collection of water within the breathing circuit is significantly reduced.