Abstract:
A surgical instrument includes an active electrode coupled to a source of electrosurgical energy. The active electrode includes a tissue-contacting surface on an exterior surface of the instrument such that the tissue-contacting surface of the active electrode may intimately engage tissue. A replacement electrode includes a tissue-contacting surface, and is located in an interior cavity of the instrument. A seal is formed between the active electrode and the interior cavity of the instrument such that the tissue-contacting-surface of the replacement electrode is isolated from contamination exposed to the exterior of the instrument. The active electrode is removable from the instrument to expose the tissue-contacting surface of the replacement electrode, and the replacement electrode is connectable to the source of electrosurgical energy when the active electrode is removed.
Abstract:
A forceps includes an end effector assembly having first and second jaw members movable relative to one another between a spaced-apart position, a first approximated position, and a second approximated position. One or both of the jaw members including a first stop member coupled thereto and disposed between the jaw members. The first stop member is longitudinally translatable along a surface of the at least one jaw member from a first position, wherein the first stop member inhibits approximation of the jaw members beyond the first approximated position, and a second position, wherein the first stop member inhibits approximation of the jaw members beyond the second approximated position.
Abstract:
A surgical instrument includes an elongated shaft module and a handle module selectively separable from one another. The elongated shaft module includes an elongated shaft member and a pair of jaw members supported at a distal end of the elongated shaft member, at least one of the jaw members moveable relative to the other jaw member between open and closed positions. The handle module includes a housing including an opening extending longitudinally therethrough. The opening is dimensioned to permit passage of the pair of jaw members in the closed position. The handle module also includes a movable handle movable relative to the housing to move the pair of jaw members between open and closed positions, and a lock to secure the elongated shaft module in place within the housing.
Abstract:
An electrosurgical instrument having opposing end effectors and a handle for effecting movement of the end effectors relative to one another, includes a pair of electrodes each including an electrically conductive surface (e.g., which can be dimensioned for sealing, clamping and/or cutting), an insulating substrate having a first edge, and an insulating layer positioned in a channel formed by the electrically conductive surface within the first edge between the conductive surface and the first edge of the insulating substrate. The insulating layer has a portion proximal to the electrically conductive surface and a portion distal from the electrically conductive surface and a gradient such that the proximal portion has a lower dielectric strength than the distal portion. A coating on one of the pair of electrodes may be disposed in at least partial non-vertical registration with a coating on the opposing one of the pair of electrodes.
Abstract:
An endoscopic bipolar forceps includes a housing having a shaft affixed thereto the shaft including jaw members at a distal end thereof. The shaft includes a longitudinal axis defined therethrough and the jaw members are adapted to connect to a source of electrosurgical energy such that the jaw members are capable of conducting energy through tissue held therebetween to effect a tissue seal. A movable handle is included that is rotatable about a pivot to force a drive assembly to move the jaw members between the first and second positions. The pivot is located a fixed distance above the longitudinal axis. A cutting assembly is included having at least one blade element disposed within one of the jaw members. The blade element is selectively moveable from a first recessed position within the jaw member to a second extended position for cutting tissue. The cutting assembly also includes a remote actuator which reciprocates a camming element to move the blade element between the first and second positions.
Abstract:
A forceps is provided and includes a housing having a shaft. An end effector assembly operatively connects to a distal end of the shaft and includes a pair of first and second jaw members. One or both of the first and second jaw members is movable relative to the other jaw member from a clamping position to an open position. A resilient member operably couples to at least one of the first and second jaw members. The resilient member is configured to bias the first and second jaw members in the clamping position and provide a closure force on tissue disposed therebetween.
Abstract:
An end effector of a forceps includes first and second jaw members movable between spaced-apart and approximated positions for grasping tissue. Each jaw member includes a tissue sealing plate that is selectively energizable. The tissue sealing plates are configured to conduct energy therebetween and though tissue to seal tissue. A knife includes a distal surface and an upper surface. The knife is selectively translatable between a retracted position and an extended position wherein the knife extends between the jaw members. The distal surface is configured for dynamic tissue cutting upon translation of the knife from the retracted to the extended position. The upper surface is configured for static tissue cutting with the knife in the extended position. The knife is selectively energizable and is configured to conduct energy between the knife and one or both of the tissue sealing plates and through tissue to electrically cut tissue.
Abstract:
A forceps includes an end effector assembly having first and second jaw members movable between a spaced-apart position and an approximated position for grasping tissue therebetween. A knife assembly having a cutting blade disposed at a distal end thereof is also provided. The knife assembly is translatable relative to the end effector assembly between a retracted position and an extended position, wherein the cutting blade extends between the jaw members to cut tissue grasped therebetween. The knife assembly includes a proximal component and a first distal component that includes the cutting blade. The proximal and first distal components are removably coupled to one another to facilitate replacement of the first distal component while the end effector assembly remains in a substantially assembled condition, i.e., without requiring substantial disassembly of the end effector assembly.
Abstract:
A method for manufacturing an end effector assembly is provided. The method includes grasping a gap-setting gauge between first and second jaw members moveable relative to one another about a pivot between a first, spaced-apart position and a second position proximate tissue and setting the first and second jaw members such that in the approximated position the jaw members cooperate to define a gap distance between the jaw members equivalent to the thickness of the gap-setting gauge such that when positioning tissue between the jaw members full approximation of the jaws is limited to the gap distance.
Abstract:
A surgical instrument is provided. The surgical instrument includes an end effector assembly including first and second jaw members moveable relative to one another between a first, spaced-apart position and a second position proximate tissue, wherein, in the second position, the jaw members cooperate to define a cavity that is configured to receive tissue between the jaw members and a resilient electrically conductive sealing surface operably coupled to at least one jaw member, the resilient electrically conductive sealing surface selectively positionable from a first unflexed position to a second flexed position.