摘要:
An optical system may include a polarization beam splitter having an input that receives multiple optical signals, a first output and a second output. The first output may provide components of the multiple optical signals having a first polarization. The second output may provide components of the multiple optical signals having a second polarization. The optical system may include a rotator having an input that receives the components to rotate the first polarization such that each of the components has the second polarization, and an output to supply components as rotated components.The optical system may also include an optical circuit including a substrate. The rotator may be separate from the substrate. The optical circuit may include an optical demultiplexer circuit provided on the substrate to receive the rotated components and the components.
摘要:
A system receives a first word on which to perform error correction; identifies combinations in which encoded bits, within the first word, can be inverted; generates candidate words based on the first word and the combinations; decodes the candidate words; determines distances between the decoded words and the first word; selects, as a second word, one of the decoded words associated with a shortest distance; compares the second word to the first word to identify errors within the first word; generates a value to cause a reliability level of the first word to increase when a quantity of the errors is less than a threshold; generates another value to cause a reliability level of the first word to decrease when the quantity of the errors is not less than the threshold; and outputs a third word based on the first word, and the value or the other value.
摘要:
An optical receiver circuit is disclosed in which a number of electrical signals are processed to extract data encoded therein. The electrical signals may be compared during the process to selectively remove one or more waveforms from one or more corresponding electrical signals. Various data signals, each including one or more waveforms, may then be processed to extract the encoded data. The optical receiver circuit reduces, or eliminates, electrical offsets which may be present in one or more of the electrical signals to reduce corresponding errors in the encoded data signals.
摘要:
The present invention provides a system, apparatus and method to improve the signal-to-noise ratio performance in receivers configured to receive differential data signals. According to various embodiments of the invention, a received differential signal is processed to consider both forward-looking and backward-looking error components to improve SNR performance, and ultimately the reach of the optical line system. Additional processing is provided to further enhance noise tolerance related to chromatic dispersion.
摘要:
The signal-to-noise ratio of amorphous silicon (a-Si:H) image sensor arrays is limited by electronic noise, which is largely due to data line capacitance. To reduce data line capacitance, an air-gap (i.e., vacuum or gas-filled space) is produced at crossover points separating the data lines and gate lines. This air-gap crossover structure is formed by depositing a release material on the gate lines, forming the data lines on the release material, and then removing (etching) the release material such that the data lines form an arch extending over the gate lines. A dielectric material is then applied to strengthen the data line, and the sensor pixels are then formed.
摘要:
Improved pixel circuits are disclosed for high fill-factor large area imager systems using continuous (e.g., amorphous silicon) sensor layers. A first approach prevents crosstalk by ensuring that each pixel is not able to go into saturation. A second approach employs a cascode transistor to maintain the bias of the sensor contact at a constant potential regardless of illumination condition. These two approaches may be combined. A resistive film connecting the pixel contacts may be used in conjunction with the second approach to prevent aliasing of signal and noise.
摘要:
A medical ultrasonic imaging system uses an adaptive multi-dimensional back-end mapping stage to eliminate loss of information in the back-end, minimize any back-end quantization noise, reduce or eliminate electronic noise, and map the local average of soft tissue to a target display value throughout the image. The system uses spatial variance to identify regions of the image corresponding substantially to soft tissue and a noise frame acquired with the transmitters turned off to determine the mean system noise level. The system then uses the mean noise level and the identified regions of soft tissue to both locally and adaptively set various back-end mapping stages, including the gain and dynamic range.
摘要:
Image contrast grids include a body having openings and an x-ray absorbing material in the openings. The openings can be formed by various micromachining techniques and the x-ray absorbing material can be formed in the openings by various coating and deposition techniques. The image contrast grids can have contoured surfaces for improved focusing capabilities. The image contrast grids can remove Compton scattered x-rays in two, non-normal dimensions. The openings can be formed with fine structures that are not visible in most imaging modes.
摘要:
A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced. As the bandwidth or capacity requirements of the leaf nodes change, the number of subcarriers, and thus the amount of data provided to each node, may be changed accordingly. Each subcarrier within a dedicated group of subcarriers may carry OAM or control channel information to a corresponding leaf node, and such information may be used by the leaf node to configure the leaf node to have a desired bandwidth or capacity.
摘要:
The present invention provides a system, apparatus and method to improve the signal-to-noise ratio performance in receivers configured to receive differential data signals. According to various embodiments of the invention, a received differential signal is processed to consider both forward-looking and backward-looking error components to improve SNR performance, and ultimately the reach of the optical line system. Additional processing is provided to further enhance noise tolerance related to chromatic dispersion.