摘要:
A beam limiting apparatus is provided for reducing the amount of off-focus radiation in the image-forming beam emitted from an x-ray tube assembly. The x-ray tube assembly has a housing with an x-ray port for the passage of x-rays therethrough, a mounting boss defining the x-ray port, an x-ray tube mounted within the housing and defining a glass envelope, an anode mounted within the glass envelope, and a cathode spaced relative to the anode within the glass envelope. A peripheral flange of the beam limiting apparatus is mountable to the mounting boss of the x-ray tube housing, and a radiation-absorbing body of the beam limiting apparatus projects downwardly from the peripheral flange through the x-ray port. The radiation-absorbing body is formed of an electrically nonconductive, filled epoxy resin material, and defines a base surface, an x-ray entrance aperture formed through the base surface, an x-ray exit aperture spaced relative to the x-ray entrance aperture, and an x-ray transmissive beam conduit formed between the entrance and exit apertures. An x-ray transmissive window is integrally molded with the radiation-absorbing body and extends across the beam conduit. The base surface of the radiation-absorbing body is spaced closely adjacent to the glass envelope of the x-ray tube and defines a predetermined gap therebetween. The x-ray tube housing also is molded of an electrically non-conductive, radiopaque, filled epoxy resin material, and includes a conductive outer surface formed of a conductive coating.
摘要:
The invention relates to an apparatus for X-ray imaging, in which imaging an X-ray beam (11) is directed through the object being imaged. The X-ray imaging apparatus (1) comprises an X-ray source (5) in front of the object being imaged, a primary collimator (6) in conjunction with the X-ray source, and radiation receiving means (15), which are located in a position behind the object being imaged. The apparatus relating to the invention comprises identifying means (20-22) which react to X-ray radiation, by means of which is ensured the entry of radiation inside the imaging area of the radiation receiving means (15).
摘要:
The present invention provides a high gain collimator producing generally uniform intensity profiles for use in lithography and other applications. A focusing optic is also provided. The collimator includes a reflector and guide channel. The guide channel preferably includes polycapillary tubes and/or microchannel plates. The polycapillary tubes are used to collimate or focus the central portion of the x-ray beam in a circular, elliptic, square, or rectangular shape. A conical, parabolic resonance reflector or grazing incidence reflector with a shape similar to the polycapillary collimator is used to increase the solid angle collected and produce a circular, square, etc. annular x-ray beam whose inside dimensions are approximately equal to the exit dimensions of the polycapillary collimator. The annular beam shape, intensity profile and collimation angle is adjusted, if necessary, by an absorber, or polycapillary tubes to provide the desired intensity profile at the exit aperture of the hybrid x-ray collimator optic. A focusing optic is obtained by placing two collimating optics end to end.
摘要:
A collimator for an X-ray testing machine and a method for adjusting the collimator with the aid of a detection system disposed in the collimator that includes at least two spatially separate detection devices, disposed and spacing one behind the other.
摘要:
A detection head and collimator for a gamma camera. The detection head includes several elementary detectors with semiconductors adjacent to each other to form a detection plane. The collimator is placed in front of the detection plane and includes a number of ducts laid out in a repetition pattern. The shape of the elementary detectors and the repetition pattern are rectangular in the detection plane.
摘要:
A method and apparatus to fabricate nano-device and semiconductor device structures and features by controlling a coherent or near coherent particle beam to directly deposit, or direct write, onto a preselected deposition site of a substrate and into a predetermined shape is provided. Evanescent wave plates are optionally included to increase the order of the particle beam prior to interaction with a photonic lens. The photonic lens is holographically generated by means of a source laser and an optical lens to focus the atomic beam onto the deposition site by means of Lorenz force interaction between light fields of the photonic lens and dipole moments of the atoms of the atomic beam. The diffraction pattern of the optical lens is computer calculated to precisely form the desired photonic lens in accordance with the shape and size of the desired feature or structure to be built on the substrate and the characteristics of the atomic beam, the source laser, the shape and position of the substrate and the location of the deposition site.
摘要:
A radiation detector (30) for a computed tomography scanner (12) includes a support structure (62). An alignment board (60) secures to the support structure (62) and includes photolithographically defined alignment openings (70) arranged to define a spatial focal point (34) relative to the alignment board (60). An anti-scatter element (32) is disposed on the support element (62) and includes one or more protrusions (86) which mate with the alignment openings (70) of the alignment board (60) to align the anti-scatter element (32) with the spatial focal point (34). A detector board (104) includes alignment structures (106) that align the detector board (104) with the anti-scatter element (32).
摘要:
An X-ray inspection system is provided having an X-ray source and first and second collimators. The first and second collimators are arranged in relation to the source and the target such that the portion of the target actually illuminated by The X-ray beam is substantially equal to the size of a selected inspection zone.
摘要:
A method of manufacturing a collimator including providing a plate-like body, coating a predetermined portion of a surface of the body with an x-ray absorbing material, and machining at least one collimating slit through the coating and the plate-like body. According to one exemplary embodiment, the coating is applied through a thermal spray process. According to another exemplary embodiment, wire electrical discharge machining (EDM) is used to machine the collimating slits. A collimator manufactured in accordance with the presently disclosed method produces precise energy beam cross-sections, yet is less expensive to manufacture.