Abstract:
A volume holographic imaging system, apparatus, and/or method enables the projection of a two-dimensional (2D) slice of a four-dimensional (4D) probing object. A 4D probing source object is illuminated to emit or scatter an optical field. A holographic element having one or more recorded holograms receives and diffracts the optical field into a diffracted plane beam having spectral information. A 4-f telecentric relay system includes a pupil filter on the relayed conjugate plane of the volume hologram and images the pupil of the volume hologram onto the front focal plane of the collector lens. A collector lens focuses the diffracted plane beam to a 2D slice of the 4D probing source object. The focused 2D slice is projected onto a 2D imaging plane. The holographic element may have multiple multiplexed holograms that are arranged to diffract light from the corresponding slice of the 4D probing source object.
Abstract:
A volume holographic imaging system, apparatus and/or method enables the projection of a two-dimensional (2D) slice of a four-dimensional (4D) probing object A 4D probing source object is illuminated to emit or scatter an optical field. A holographic element having one or more recorded holograms receives and diffracts the optical field into a diffracted plane beam having spectral information. A 4-ftelecentric relay system includes a pupil filter on the relayed conjugate plane of the volume hologram and images the pupil of the volume hologram onto the front focal plane of the collector lens. A collector lens focuses the diffracted plane beam to a 2D slice of the 4D probing source object. The focused 2D slice is projected onto a 2D imaging plane. The holographic element may have multiple multiplexed holograms that are arranged to diffract light from the corresponding slice of the 4D probing source object.
Abstract:
Optical coherence tomograph (OCT) probe device (1) comprising an endoscope (6) which is adapted to be coupled to a light source (2) and has a distal tip portion (6.2), the tip portion (6.2) including focussing lens means (11) and a window (5) for directing light to a subject (7) to be scanned, and for receiving light scattered at the subject (7), to send the scattered light back through the endoscope (6) so that it may be applied to a detector (3) together with reference light, said OCT probe device (1) comprising a beam splitter (13; 17) to separate said reference light from the remaining light, as well as a reference light reflector (4; 20) for reflecting the reference light back so that it is composed to the light returned from the subject (7); the beam splitter (13; 17) and the reference light reflector (4; 20) are located in the tip portion (6.2) of the endoscope means (6) behind the focussing lens means (11) through which the composed light is sent back.
Abstract:
A volume holographic imaging system, apparatus, and/or method enables the projection of a two-dimensional (2D) slice of a four-dimensional (4D) probing object A 4D probing source object is illuminated to emit or scatter an optical field A holographic element having one or more recorded holograms receives and diffracts the optical field into a diffracted plane beam having spectral information A 4-ftelecentπc relay system includes a pupil filter on the relayed conjugate plane of the volume hologram and images the pupil of the volume hologram onto the front focal plane of the collector lens A collector lens focuses the diffracted plane beam to a 2D slice of the 4D probing source object The focused 2D slice is projected onto a 2D imaging plane The holographic element may have multiple multiplexed holograms that are arranged to diffract light from the corresponding slice of the 4D probing source object.
Abstract:
Methods for treating maladies such as cutaneous vascular lesions. A patient in need of vascular lesion treatment is identified. A hyperosmotic agent is administered to a region adjacent the lesion. Blood flow velocity is slowed within the region using the hyperosmotic agent, and the lesion is exposed to laser radiation.
Abstract:
A new process to increase light transmission in biological tissue has been developed. The technique involves temporarily replacing tissue water with a fluid that has a refractive index closer to that of inter/intra cellular components. Subsequently, the amount of index mis-match between these components and the fluid environment is temporarily decreased. This lowers the amount of random reflection and refraction which also reduces light scattering. In addition, the infrared absorption is reduced when the fluid has a lower absorption coefficient than water. Furthermore, this process is reversible; thus creating a transient window to enhance light transmission for therapeutic and/or diagnostic applications.
Abstract:
Onset of coagulation of blood in a blood vessel irradiated by electromagnetic radiation is detected by directing light at the blood vessel and monitoring the intensity of a portion of the light remitted from the blood vessel. An increase or decrease in the monitored light intensity indicates the onset of coagulation. The increase or decrease results from the formation of methemoglobin in the blood which accompanies the onset of coagulation. The methemoglobin is formed by photo conversion or thermal conversion of normal blood oxyhemoglobin. The wavelength of the monitoring light is selected to be different from that of the electromagnetic radiation and is preferably a wavelength for which the ratio of its absorptivity in hemoglobin and its absorptivity in normal blood is less than about one-half or greater than about two.