Abstract:
Disclosed is method and apparatus for supplying fuel of LPG car having LPI system. More particularly, the present invention generates a gas fuel injection signal based on a gasoline fuel injection signal and directly injects LPG fuel within a fuel tank to a combustion chamber using the generated gas fuel injection signal to drive an engine. Therefore, an engine can be easily changed, the manufacturing cost of a duel car of LPG and gasoline can be reduced, and the manufacturing process thereof can be simplified.
Abstract:
A wafer processing method for improving gettering capabilities of wafers made therefrom is presented. The method includes the steps of preparing, annealing and ion-implanting. The preparing step involves preparing the wafer from a silicon ingot. The annealing step involves forming first gettering sites in both sides of the wafer by annealing the wafer. The ion-implanting step involves forming second gettering sites in a back side of the wafer in which the first gettering sites are already formed.
Abstract:
Disclosed is method and apparatus for supplying fuel of LPG car having LPI system. More particularly, the present invention generates a gas fuel injection signal based on a gasoline fuel injection signal and directly injects LPG fuel within a fuel tank to a combustion chamber using the generated gas fuel injection signal to drive an engine. Therefore, an engine can be easily changed, the manufacturing cost of a duel car of LPG and gasoline can be reduced, and the manufacturing process thereof can be simplified.
Abstract:
Embodiments of the present invention provide methods for measuring a wafer surface. A portion of the wafer surface is measured using a particle counter to provide first measurements corresponding to a plurality of points on the wafer surface. A selected area of the wafer surface including one of the plurality of points is measured using an atomic force microscope (AFM) to provide a microroughness measurement of the selected area. The selected area is a localized area of the portion of the wafer surface measured using the particle counter. The first measurements and the microroughness measurement are provided as a measurement of the wafer surface. The portion measured using a particle counter may, for example, be substantially the entire wafer surface.
Abstract:
A wafer processing method for improving gettering capabilities of wafers made therefrom is presented. The method includes the steps of preparing, annealing and ion-implanting. The preparing step involves preparing the wafer from a silicon ingot. The annealing step involves forming first gettering sites in both sides of the wafer by annealing the wafer. The ion-implanting step involves forming second gettering sites in a back side of the wafer in which the first gettering sites are already formed.