Abstract:
Techniques for mitigating effects of differing latencies associated with real time data streams in multimedia communication networks. For example, a technique for mitigating a latency differential between a first media path and a second media path, over which a first device and a second device are able to communicate, includes the following steps. A training phase is performed to determine a latency differential between the first media path and the second media path. Prior to the first device switching a media stream, being communicated to the second device, from the first media path to the second media path, the first device synchronizes the media stream based on the determined latency differential such that a latency associated with the switched media stream is made to be substantially consistent with a latency of the second media path.
Abstract:
Apparatus and method for at least partially fitting a medical implant system to a recipient is described. The medical implant system is configured to provide electrical stimulation and at least one other mode of stimulation to the recipient. These apparatuses and methods comprise executing a genetic algorithm to select a set of parameter values for the medical implant system. This genetic algorithm may comprise generating successive generations of child populations and then providing a determined set of parameter values to the medical implant system for use in providing stimulation to the recipient.
Abstract:
A sphincteric control system for controlling the function of a bodily organ, such as the bladder. The system comprises a first implanted sphincter (12) disposed about a portion of the bodily organ, a second implanted sphincter (13) disposed about a portion of the bodily organ, and a stimulator unit (20) that is adapted to apply electrical stimulation to each of the first and second implanted sphincters. One of the first or second implanted sphincters is made from a smooth muscle and the other of the first or second implanted sphincters is made from a striated muscle.
Abstract:
Apparatus and method for at least partially fitting a cochlear implant system to a patient is described, comprising: executing a genetic algorithm to select values for a subset of one or more parameters selected from a plurality of parameters for which values are to be selected to fit the implant, wherein said genetic algorithm is operable to generate one or more successive generations of values for said parameter subset; and determining, based on patient feedback, said values of said values for said parameter subset in each of said one or more successive generations.
Abstract:
An implantable stimulation device is disclosed which provides for reduced power consumption when compared with bipolar stimulation and better stimulation performance when compared with monopolar stimulation. Implantable stimulator devices use less power in monopolar stimulation mode than that of bipolar stimulation but stimulation performance is greater when using bipolar stimulation. The device comprises circuitry capable of simultaneous stimulation between a reference electrode and an electrode of a stimulation array and between electrodes of the stimulation array, the ratio of current to the reference electrode and array electrodes being selectable.
Abstract:
An implantable electrode arrangement (1) for stimulating excitable tissue, in particular the neosphincter to control urinary incontinence. The electrode is in the form of a extending peg with a pair of electrode elements (2, 3) extending from a base (4). The elements are arranged to fit over the tissue to be stimulated and have electrodes (5, 6) on the inner surfaces of the peg portions. The tissue located between the peg portions receives stimulation. Also disclosed are methods of treating urinary incontinence by electrically stimulating a band of smooth muscle and electrode having an insulating member and electrodes on the inner surface such that an electric field applied to tissue is confined.
Abstract:
A sphincteric control system for controlling the function of a bodily organ, such as the bladder. The system comprises a first implanted sphincter (12) disposed about a portion of the bodily organ, a second implanted sphincter (13) disposed about a portion of the bodily organ, and a stimulator unit (20) that is adapted to apply electrical stimulation to each of the first and second implanted sphincters. One of the first or second implanted sphincters is made from a smooth muscle and the other of the first or second implanted sphincters is made from a striated muscle.
Abstract:
A cochlear implant is provided. The cochlear implant comprises a stimulator unit configured to generate electrical stimulation signals based on sound processor-encoded signals, and to generate one or more optical stimulation signals, and an implantable stimulating assembly. The implantable stimulating assembly is configured to be implanted into a basal region of a recipient's cochlea such that when the stimulating assembly is fully implanted, a distal end of the assembly extends to the basal turn of the cochlea. The stimulating assembly also comprises: an optical contact to deliver the one or more optical stimulation signals to the cochlea, and an electrical contact to deliver the electric stimulation signals to a basal region of the cochlea so as to cause perception by the recipient of one or more frequency components of the acoustic sound signal.
Abstract:
System and methods for fitting a cochlear implant for a recipient. In a fitting method, receiving, at an acoustic domain user interface, an acoustic target intensity for each of a plurality of frequency channels at which the recipient is to experience a desired percept; loading into a speech processor unit of the cochlear implant a MAP specifying a stimulation signal current level corresponding to a selected acoustic target; presenting the selected acoustic target to the cochlear implant so as to cause the cochlear implant to deliver electrical stimulation to the recipient at the current level corresponding to the selected acoustic target; and upon receipt of an external command: adjusting the current level corresponding to the selected acoustic target; and repeating the loading and the presenting steps.
Abstract:
Defoaming compositions for reducing the amount of gas present in a fluid such as a cement composition are provided. In an embodiment, a defoaming composition includes a carboxylic acid compound or an ester of a carboxylic acid compound; an alpha olefin compound; and an alcohol compound.