摘要:
A forced-flow steam generator includes first and second steam generator pipes which form a surrounding wall, wherein the first and second steam generator pipes are welded in a gas-tight fashion and are traversable by flow in a vertical direction. A passage collector is arranged within the surrounding wall, wherein the passage collector connects the first steam generator pipes with the second steam generator pipes. The first steam generator pipes are connected at an outlet side to an inlet side of the second steam generator pipes, wherein the second steam generator pipes are connected in series with the first steam generator pipes. Each of the second generator pipes has a restrictor device. Further, a power plant with a forced-flow steam generator is provided.
摘要:
A steam generator is provided. The steam generator has a combustion chamber having a peripheral wall formed at least partially from gas-proof, welded steam generator pipes, at least two additional inner walls formed at least partially from additional steam generator pipes which are arranged inside the combustion chamber. The inner walls are connected one behind the other on the flow medium side by an intermediate collector. The steam generator has a high service life and is reliable. The flow medium on the inlet of the inner wall upstream of the intermediate collector has a lower temperature than that of the flow medium on an inlet of the peripheral wall.
摘要:
A method for operating a steam generator comprising a combustion chamber having a plurality of evaporator heating surfaces which are connected in parallel on the flow medium side is provided. An object is to provide a steam generator which has a particularly long service life and which is particularly reliable. For this purpose, a flow medium is introduced into an inlet of a first evaporator heating surface at a temperature which is lower than the temperature of the flow medium introduced into the inlet of a second evaporator heating surface.
摘要:
A steam generator is provided. The steam generator has a combustion chamber having a peripheral wall formed at least partially from gas-proof, welded steam generator pipes, at least two additional inner walls formed at least partially from additional steam generator pipes which are arranged inside the combustion chamber. The inner walls are connected one behind the other on the flow medium side by an intermediate collector. The steam generator has a high service life and is reliable. The flow medium on the inlet of the inner wall upstream of the intermediate collector has a lower temperature than that of the flow medium on an inlet of the peripheral wall.
摘要:
A method for operating a directly heated, solar-thermal steam generator is provided. As per the method, a nominal value Ms for the supply water mass flow M is conducted to an apparatus for adjusting the supply water mass flow M wherein, at the adjustment of the nominal value Ms for the supply water mass flow M, account is taken of a correction value KT, by which the thermal effects of storage or withdrawal of thermal energy in an evaporator are corrected.
摘要:
A method for operating a directly heated, solar-thermal steam generator is provided. As per the method, a nominal value {dot over (M)}s for the supply water mass flow {dot over (M)} is conducted to an apparatus for adjusting the supply water mass flow {dot over (M)} wherein, at the adjustment of the nominal value {dot over (M)}s for the supply water mass flow {dot over (M)}, account is taken of a correction value KT, by which the thermal effects of storage or withdrawal of thermal energy in an evaporator are corrected.
摘要:
A method for operating a once-through steam generator including an evaporator, in which a feeding mass flow of a flow medium is supplied using a feed pump to the evaporator and at least partially evaporated there, wherein flow medium that has not evaporated is separated in a separator arranged downstream of the evaporator and a circulating mass flow of the separated flow medium is returned using a circulating pump to the evaporator, and the mass flow referred to as the evaporator mass flow of the flow medium flowing through the evaporator is additively composed of the feeding mass flow and the circulating mass flow. In a low-load interval, the feeding mass flow is increased with increasing load while the circulating mass flow is kept substantially constant, in a moderate load interval the feeding mass flow is further increased with increasing load and the circulating mass flow is reduced to zero.