摘要:
Non-food plant biomass is subjected to hot-water extraction in a pressurized vessel at an elevated temperature up to about 250° C. and at a pH below about 7.0, to yield an aqueous extract containing hemicellulosic components, other wood-derived compounds, and a lignocellulosic residue. The separated aqueous extract or liquor is purified and concentrated through a multi-step process producing fermentable sugars. At each stage, inhibitory chemicals such as acetic acid, lignin, and furfural are separated and eventually recovered as commercial chemicals. The lignocellulosic residue may be further processed, as a material with enhanced resistance to sorption of water, for manufacture of improved pulp and paper, construction materials, pellet fuel, and/or other useful products.
摘要:
Non-food plant biomass is subjected to hot-water extraction in a pressurized vessel at an elevated temperature up to about 250° C. and at a pH below about 7.0, to yield an aqueous extract containing hemicellulosic components, other wood-derived compounds, and a lignocellulosic residue. The separated aqueous extract or liquor is purified and concentrated through a multi-step process producing fermentable sugars. At each stage, inhibitory chemicals such as acetic acid, lignin, and furfural are separated and eventually recovered as commercial chemicals. The lignocellulosic residue may be further processed, as a material with enhanced resistance to sorption of water, for manufacture of improved pulp and paper, construction materials, pellet fuel, and/or other useful products.
摘要:
Non-food plant biomass is subjected hot-water extraction in a pressurized vessel at an elevated temperature up to about 250° C. without addition of reagents, to yield an aqueous extract containing hemicellulosic components and a lignocellulosic residue. The process leaves the lignocellulose substantially intact, but with the hemicellulosic content largely removed. The separated aqueous extract or liquor is concentrated and purified, and long-chain sugars are reduced into monomer saccharides. The lignocellulosic residue may be further processed, to yield a useful fibrous material that is highly resistant to sorption of water. This material may be used for composite materials that resist water degradation, or may be used to produce a higher thermal-yield, water-resistant fuel, or may be used as bioconversion feedstock for producing high-value, lignocellulosic derivatives.