摘要:
A process, apparatus, and method for online control and database collection and management of a computerized detection, tracking, and feedback control system. The system tests for nutrients by Raman scattering effects on skin or other tissues to determine the content of carotenoids or other nutrients as evidenced in that skin. Serum levels of nutrients may vary dramatically with time, but skin tissues may average such nutrition over time. Skin and other tissues may be scanned with light to produce accurate measurements of carotenoids or other nutrients accumulated in the skin based on the Raman scattering affect of those nutrients in the skin. A score can be derived from a properly calibrated bio-photonic scanner to reflect an averaged effective uptake of the detected nutrient (e.g. such as the carotenoid example).
摘要:
A method, apparatus, and set of compositions are disclosed for calibrating a bio-photonic scanner. The scanner detects selected molecular structures of tissues, nondestructively, in vivo. The apparatus may include a computer, including processor and memory connecting to the scanner, including an illuminator to direct light nondestructively onto tissue in vivo, a detector to detect an intensity of a radiant response of the tissue to the light, and a probe to direct light onto the subject and receive a radiant response back into the detector. The apparatus is calibrated using a synthetic material to mimic the radiant response of live tissue, correcting for background fluorescence and elastic scattering. Dopants in a matrix of synthetic material mimic selected molecular structures of tissue. Matrix materials include a dilatant compound, and dopants include biological materials as well as K-type polarizing film powdered and mixed.
摘要:
A process, apparatus, and method for online control and database collection and management of a computerized detection, tracking, and feedback control system. The system tests for nutrients by Raman scattering effects on skin or other tissues to determine the content of carotenoids or other nutrients as evidenced in that skin. Serum levels of nutrients may vary dramatically with time, but skin tissues may average such nutrition over time. Skin and other tissues may be scanned with light to produce accurate measurements of carotenoids or other nutrients accumulated in the skin based on the Raman scattering affect of those nutrients in the skin. A score can be derived from a properly calibrated bio-photonic scanner to reflect an averaged effective uptake of the detected nutrient (e.g. such as the carotenoid example).
摘要:
Methods, apparatus, and compositions calibrate a bio-photonic scanner detecting selected molecular structures of tissues, nondestructively, in vivo. The apparatus may include a processor, memory, and scanner. The scanner directs light nondestructively onto tissue in vivo, then receives back a radiant response through a system of mirrors and lenses back into the detector. Software for controlling the scanner and processing its output may be calibrated using a synthetic material to mimic the radiant response of tissue. Calibration may account for background fluorescence and elastic scattering, mimicking skin tissue materials having substantially no Raman scattering response of interest. Dopants may be added to the matrix of white scan material to mimic selected molecular structures in tissue. Matrix materials include a dilatant compound, and dopants include biological materials as well as K-type polarizing film and other materials.
摘要:
A process, apparatus, and method for online control and database collection and management of a computerized detection, tracking, and feedback control system. The system tests for nutrients by Raman scattering effects on skin or other tissues to determine the content of carotenoids or other nutrients as evidenced in that skin. Serum levels of nutrients may vary dramatically with time, but skin tissues may average such nutrition over time. Skin and other tissues may be scanned with light to produce accurate measurements of carotenoids or other nutrients accumulated in the skin based on the Raman scattering affect of those nutrients in the skin. A score can be derived from a properly calibrated bio-photonic scanner to reflect an averaged effective uptake of the detected nutrient (e.g. such as the carotenoid example).
摘要:
A process, apparatus, and method for computerized detection, tracking, and feedback control of nutritional supplements in an animal, including humans relies on Raman scattering effects on skin or other tissues to determine the content of carotenoids or other nutrients as evidenced in that skin. Serum levels of nutrients may vary dramatically with time, but skin tissues may average such nutrition over time. Skin and other tissues may be scanned with light to produce accurate measurements of carotenoids or other nutrients accumulated in the skin based on the Raman scattering affect of those nutrients in the skin. A score can be derived from a properly calibrated bio-photonic scanner to reflect an averaged effective uptake of the detected nutrient (e.g. such as the carotenoid example). This feedback control is thus much more immediate than any anecdotal, long-term, report of general well being, which would vary so much between individuals as to be nearly impossible to ascertain on an individual level, and difficult, invasive, and expensive to determine individually in a conventional clinical procedure.
摘要:
A process, apparatus, and method for computerized detection, tracking, and feedback control of nutritional supplements in an animal, including humans relies on Raman scattering effects on skin or other tissues to determine the content of carotenoids or other nutrients as evidenced in that skin. Serum levels of nutrients may vary dramatically with time, but skin tissues may average such nutrition over time. Skin and other tissues may be scanned with light to produce accurate measurements of carotenoids or other nutrients accumulated in the skin based on the Raman scattering affect of those nutrients in the skin. A score can be derived from a properly calibrated bio-photonic scanner to reflect an averaged effective uptake of the detected nutrient (e.g. such as the carotenoid example). This feedback control is thus much more immediate than any anecdotal, long-term, report of general well being, which would vary so much between individuals as to be nearly impossible to ascertain on an individual level, and difficult, invasive, and expensive to determine individually in a conventional clinical procedure.
摘要:
A method for measuring a chemical concentration in tissue has two measurement steps. First, generating a first light and illuminating a portion of the tissue with the first light; capturing a first reflected light from the tissue; directing the first reflected light to a plurality of light sensors, each light sensor measuring light at a different wavelength, that wavelength being proximate to a wavelength of an expected Raman shift wavelength for the chemical in the tissue; and obtaining a measurement from each of the light sensors, each measurement being specific to the first reflected light through that light sensor. Second, generating a second light and illuminating a portion of the tissue with the second light; capturing a second reflected light from the tissue; directing the second reflected light to the plurality of light sensors, each light sensor measuring light at a different wavelength that wavelength being proximate to a wavelength of an expected Raman shift wavelength for the chemical in the tissue; and obtaining a measurement from each of the light sensors, each measurement being specific to the second reflected light through that light sensor. The measurements of the first reflected light and the measurements of the second reflected light are used to calculate a concentration of the chemical in the tissue.