摘要:
A computer system for automatic selection of a computer-aided detection (CAD) algorithm including a database storing image data, a browser for navigating the data and selecting image data, an application receiving image data selected by the browser, and a selector selecting a CAD algorithm for processing the image data according to at least one of fixed attributes of the image data and an indication of a subject of the image data.
摘要:
In one aspect of the present invention, a method for calculating a response value at a first voxel indicative of a global shape in an image is provided. The method includes the steps of (a) determining at least one local shape descriptor associated with each of the at least one local shape descriptor; (b) determining a spread function associated with the each of the at least one local shape descriptor; (c) determining second voxels around the first voxel; (d) calculating values for each the at least one local shape descriptor at each of the second voxels; (e) determining a contribution of each of the second voxels at the first voxel based on the spread functions; and (f) using a combination function to combine the contributions to determine the response value indicative of the global shape.
摘要:
A method of classifying features in digitized images includes providing a plurality of feature points in an n-dimensional space, wherein said feature points have been extracted from a digitized medical image, formulating a support vector machine to classify said feature point into one of two sets, wherein each said feature classification vector is transformed by an adjacency matrix defined by those points that are nearest neighbors of said feature, and solving said support vector machine by a linear optimization algorithm to determine a classifying plane that separates the feature vectors into said two sets.
摘要:
A method of detecting lung nodules in an anterior posterior x-ray radiograph comprising the steps of: generating candidate regions in image showing changes in contrast above a threshold level, and eliminating false positives by eliminating edges assignable to organs by: identifying edges; categorizing and eliminating rib edges; categorizing and eliminating lung tissue edges, and categorizing and eliminating blood vessels.
摘要:
We propose using different classifiers based on the spatial location of the object. The intuitive idea behind this approach is that several classifiers may learn local concepts better than a “universal” classifier that covers the whole feature space. The use of local classifiers ensures that the objects of a particular class have a higher degree of resemblance within that particular class. The use of local classifiers also results in memory, storage and performance improvements, especially when the classifier is kernel-based. As used herein, the term “kernel-based classifier” refers to a classifier where a mapping function (i.e., the kernel) has been used to map the original training data to a higher dimensional space where the classification task may be easier.
摘要:
A medical imaging system is used to recognize an internal structure from a three-dimensional image. The image includes image sub-volumes. An image sub-volume is selected using a non-linear search pattern. The selected image sub-volume is analyzed for the presence of the internal structure. The steps of selecting an image sub-volume using the non-linear search pattern and analyzing the selected sub-volume for the presence of the internal structure are repeated until the internal structure is found in an image sub-volume. Bounds of the internal structure are identified based on the location of the image sub-volume within which the internal structure is found.
摘要:
In one aspect of the present invention, a method for calculating a response value at a first voxel indicative of a global shape in an image is provided. The method includes the steps of (a) determining at least one local shape descriptor associated with each of the at least one local shape descriptor; (b) determining a spread function associated with the each of the at least one local shape descriptor; (c) determining second voxels around the first voxel; (d) calculating values for each the at least one local shape descriptor at each of the second voxels; (e) determining a contribution of each of the second voxels at the first voxel based on the spread functions; and (f) using a combination function to combine the contributions to determine the response value indicative of the global shape.
摘要:
CAD (computer-aided decision) support systems, methods and tools for medical imaging are provided, which use machine learning classification for automated detection and marking of regions of interest in medical images. Machine learning methods are used for adapting/optimizing a CAD process by seamlessly incorporating physician knowledge into the CAD process using training data that is obtained during routine use of the CAD system.
摘要:
A medical imaging system is used to recognize an internal structure from a three-dimensional image. The image includes image sub-volumes. An image sub-volume is selected using a non-linear search pattern. The selected image sub-volume is analyzed for the presence of the internal structure. The steps of selecting an image sub-volume using the non-linear search pattern and analyzing the selected sub-volume for the presence of the internal structure are repeated until the internal structure is found in an image sub-volume. Bounds of the internal structure are identified based on the location of the image sub-volume within which the internal structure is found.
摘要:
A method for associating a computer aided detection/diagnosis result with an image including the steps of providing one or more digitized images, each image comprising a plurality of intensities corresponding to a domain of points on an N-dimensional grid, performing a computer-aided detection/diagnosis of intensity data of a first image, calculating a hash signature of intensity of a second input image, storing said computer-aided diagnosis results, and storing said hash signature, wherein said hash signature verifies said second image when said second image is displayed with said computer-aided diagnosis result.