摘要:
In one aspect of the present invention, a method for calculating a response value at a first voxel indicative of a global shape in an image is provided. The method includes the steps of (a) determining at least one local shape descriptor associated with each of the at least one local shape descriptor; (b) determining a spread function associated with the each of the at least one local shape descriptor; (c) determining second voxels around the first voxel; (d) calculating values for each the at least one local shape descriptor at each of the second voxels; (e) determining a contribution of each of the second voxels at the first voxel based on the spread functions; and (f) using a combination function to combine the contributions to determine the response value indicative of the global shape.
摘要:
In one aspect of the present invention, a method for calculating a response value at a first voxel indicative of a global shape in an image is provided. The method includes the steps of (a) determining at least one local shape descriptor associated with each of the at least one local shape descriptor; (b) determining a spread function associated with the each of the at least one local shape descriptor; (c) determining second voxels around the first voxel; (d) calculating values for each the at least one local shape descriptor at each of the second voxels; (e) determining a contribution of each of the second voxels at the first voxel based on the spread functions; and (f) using a combination function to combine the contributions to determine the response value indicative of the global shape.
摘要:
A method for identifying non-body structures in digitized medical images including the steps of providing a digitized image comprising a plurality of intensities corresponding to a domain of points on an N-dimensional grid, wherein said image includes a representation of a body and of non-body structures separate from said body, initializing a surface in said image on a side of said non-body structures opposite from said body, defining a plurality of forces acting on said surface, and displacing said surface through said non-body structures using said forces until said body is encountered.
摘要:
A method for identifying non-body structures in digitized medical images including the steps of providing a digitized image comprising a plurality of intensities corresponding to a domain of points on an N-dimensional grid, wherein said image includes a representation of a body and of non-body structures separate from said body, initializing a surface in said image on a side of said non-body structures opposite from said body, defining a plurality of forces acting on said surface, and displacing said surface through said non-body structures using said forces until said body is encountered.
摘要:
In a hand tool device having at least one charging coil provided for transmitting energy, the charging coil includes a coil core having at least two core segments which are movable relative to each other.
摘要:
In a method for controlling an internal combustion engine, in particular a diesel internal combustion engine, at least one variable is formed on a cylinder-specific basis, which variable characterizes a respective profile of a combustion in an associated combustion chamber, and the control of cylinder-specific fuel injection parameters is influenced as a function of said at least one variable which characterizes the combustion profile.
摘要:
An image processing system for recognizing image features in three dimensional images, which can be medical images, uses a mask generator for generating masks that are used by a candidate searcher to search for candidate images in the three dimensional image. The candidate searcher applies the mask to a section of a foreground region of the image to determine the presence of a structure/object by counting the number of intersections between the mask and the section of the foreground region.
摘要:
Described herein is a framework for multi-view matching of regions of interest in images. According to one aspect, a processor receives first and second digitized images, as well as at least one CAD finding corresponding to a detected region of interest in the first image. The processor determines at least one candidate location in the second image that matches the CAD finding in the first image. The matching is performed based on local appearance features extracted for the CAD finding and the candidate location. In accordance with another aspect, the processor receives digitized training images representative of at least first and second views of one or more regions of interest. Feature selection is performed based on the training images to select a subset of relevant local appearance features to represent instances in the first and second views. A distance metric is then learned based on the subset of local appearance features. The distance metric may be used to perform matching of the regions of interest.
摘要:
A computer-implemented method for identifying an object of interest includes providing input data including an image and a candidate for the object of interest in the image, extracting a boundary of the candidate, and extracting a segment of a region of interest containing the candidate. The method further includes determining a plurality of features of an extracted segment of the region of interest containing the candidate, and outputting the object of interest, wherein the object of interest is characterized by the plurality of features, wherein the object of interest and the plurality of features are stored as computer-readable code.
摘要:
Described herein is a framework for multi-view matching of regions of interest in images. According to one aspect, a processor receives first and second digitized images, as well as at least one CAD finding corresponding to a detected region of interest in the first image. The processor determines at least one candidate location in the second image that matches the CAD finding in the first image. The matching is performed based on local appearance features extracted for the CAD finding and the candidate location. In accordance with another aspect, the processor receives digitized training images representative of at least first and second views of one or more regions of interest. Feature selection is performed based on the training images to select a subset of relevant local appearance features to represent instances in the first and second views. A distance metric is then learned based on the subset of local appearance features. The distance metric may be used to perform matching of the regions of interest.