摘要:
Implementations related to updating channel adaptation parameters are described. In one implementation, an R2T frame, such as an acknowledgment (ACK) frame, is modified to carry a partial bit allocation table (BAT). The R2T frame may be received by a transceiver apparatus and the partial BAT carried in the header or extended header(s) of R2T frame may be used to update a BAT stored in the transceiver. In another implementation, a message frame is modified to carry a partial BAT. The message frame may be received by a transceiver apparatus and the partial BAT used to update a BAT stored in the transceiver. A unique identification number generated by the receiving transceiver apparatus may be used to synchronize BATs stored in two communicating transceivers without necessity of exchanging additional control messages.
摘要:
Method and apparatus for use within a wireless OFDM network that transmits and receives first and second packets each having header bits and utilizing variable header repetition. The header bits in the first packet are communicated on multiple OFDM symbols and repeated on a plurality of OFDM subcarriers in a first frequency band. The header bits in a second packet are communicated on fewer OFDM symbols and in a second frequency band that overlaps with and is wider than the first frequency band.
摘要:
There are several exemplary ways to more efficiently communicate an out-of-domain seed to a receiver—in a first technique, the seed can be indicated in the header portion or data portion of a packet. For example, the header portion of the packet could contain one or more bit fields that indicate the value of the LFSR seed used for the preamble portion of the packet. The receiver would learn the out-of-domain seed after receiving a first out-of-domain packet and decoding the header portion of that packet. After learning the out-of-domain seed, the receiver could send a packet indicating the value of the out-of-domain seed to the local master. The local master could then transmit the value of the out-of-domain seed in the header portion or data portion of a local MAP frame.
摘要:
Techniques for header encoding include encoding a plurality of bits using a forward error correction code, generating an FEC codeword comprising a plurality of encoded bits, and concatenating a first copy of the FEC codeword with a second copy of the FEC codeword, wherein the concatenating comprises cyclically shifting by two bits the second concatenated copy of the FEC codeword relative to the first concatenated copy of the FEC codeword, wherein the encoded bits of the first and second copies of the FEC codewords are modulated on at least one OFDM symbol. techniques for header decoding include receiving a plurality of encoded bits comprising at least two concatenated copies of an FEC codeword, decoding a first copy of the FEC codeword to generate a first plurality of decoded bits, and decoding a second copy of the FEC codeword to generate a second plurality of decoded bits.
摘要:
Implementations related to updating channel adaptation parameters are described. In one implementation, an R2T frame, such as an acknowledgment (ACK) frame, is modified to carry a partial bit allocation table (BAT). The R2T frame may be received by a transceiver apparatus and the partial BAT carried in the header or extended header(s) of R2T frame may be used to update a BAT stored in the transceiver. In another implementation, a message frame is modified to carry a partial BAT. The message frame may be received by a transceiver apparatus and the partial BAT used to update a BAT stored in the transceiver. A unique identification number generated by the receiving transceiver apparatus may be used to synchronize BATs stored in two communicating transceivers without necessity of exchanging additional control messages.
摘要:
Described herein are implementations related to the generation of probe frames. In one implementation, a generated probe frame includes two symbols, where the two symbols are different. In one implementation, a first of the two symbols is a probe symbol and a second of the two symbols is a quiet symbol.
摘要:
Described herein are implementations related to data communication using a frame that includes at least two data packets. In one implementation, a first of the data packets includes at least a payload with repeated payload portions to increase diversity gain. A second of the data packets includes at least a payload with repeated payload portions to increase diversity gain. The repeated payload portions of the second data packet are shuffled or rotated in relation to the repeated data payload portions of the first data packet. In one implementation, the frame is conveyed in a Power Line Communication (PLC) system.
摘要:
At least one implementation herein enables at least two multicarrier apparatuses or nodes operating on overlapped frequency bands with different tone spacing to communicate. In particular, a first node may use a tone spacing that is less than the tone spacing used by a second node. The first and second nodes may communicate and are thus aligned when the second node transmits identical symbols over a time duration equal to a length of a symbol used by the first node.
摘要:
One embodiment relates to a security apparatus. The apparatus includes a security controller. The security controller is within a secure domain. The controller is configured to receive a trigger event from a first device outside the secure domain and a second trigger event. The controller is configured to automatically generate a secure password from a provisional password using a secure password provisioning protocol in response to the first trigger event and the second trigger event. The controller is also configured to pair the first device with the secure domain by establishing secure communications using the secure password.
摘要:
An OFDM communication system is described that allows different values of D in a single domain where nodes are operating in different portions of frequency bands. For the power-line medium, G.9960 has defined two over-lapped baseband bandplans, 50 MHz-PB and 100 MHz-PB. In this exemplary scenario, the level of frequency diversity is different depending on the bandplan, hence providing different header decodibility if D is fixed to 1. If D is fixed to 2, then it increases reliability for the narrow-band devices, but may also unnecessarily increase overhead for the wide-band devices. An exemplary aspect is therefore directed to techniques to accommodate different repetitions schemes (D=1, . . . , DMAX and H=I, . . . , HMAX) in a single domain, and still allow devices to communicate with one another where DMAX and HMAX can be larger than 2.