Abstract:
Example methods and systems for determining correlated movements associated with movements caused by driving a vehicle are provided. In an example, a computer-implemented method includes identifying a threshold number of sets of correlated movements. The method further includes determining that the threshold number of sets of correlated movements is associated with movements caused by driving a vehicle. The method still further includes causing the wearable computing system to select a driving user interface for the wearable computing system.
Abstract:
Example embodiments may facilitate altitude control by a balloon in a balloon network. An example method involves: (a) causing a balloon to operate in a first mode, wherein the balloon comprises an envelope, a high-pressure storage chamber, and a solar power system, (b) while the balloon is operating in the first mode: (i) operating the solar power system to generate power for the balloon and (ii) using at least some of the power generated by the solar power system to move gas from the envelope to the high-pressure storage chamber such that the buoyancy of the balloon decreases; (c) causing the balloon to operate in a second mode; and while the balloon is operating in the second mode, moving gas from the high-pressure storage chamber to the envelope such that the buoyancy of the balloon increases.
Abstract:
Methods and systems involving an incentivized recovery of balloon materials are disclosed herein. An example system may be configured to: (a) determine a landing location of a balloon, where the balloon has been configured to operate as a node in a balloon network; (b) detect a removal event corresponding to the balloon ceasing to operate as a node in the balloon network and descending to the landing location; and (c) in response to detecting the removal event, initiate a transmission of a recovery-assistance signal that is comprised of (i) location data corresponding to the landing location of the balloon and (ii) an indication of an incentive to recover the balloon.
Abstract:
Example embodiments may facilitate altitude control by a balloon in a balloon network. An example method involves: (a) causing a balloon to operate in a first mode, wherein the balloon comprises an envelope, a high-pressure storage chamber, and a solar power system, (b) while the balloon is operating in the first mode: (i) operating the solar power system to generate power for the balloon and (ii) using at least some of the power generated by the solar power system to move gas from the envelope to the high-pressure storage chamber such that the buoyancy of the balloon decreases; (c) causing the balloon to operate in a second mode; and while the balloon is operating in the second mode, moving gas from the high-pressure storage chamber to the envelope such that the buoyancy of the balloon increases.
Abstract:
A wearable computing device is authenticated using bone conduction. When a user wears the device, a bone conduction speaker and a bone conduction microphone on the device contact the user's head at positions proximate the user's skull. A calibration process is performed by transmitting a signal from the speaker through the skull and receiving a calibration signal at the microphone. An authentication process is subsequently performed by transmitting another signal from the speaker through the skull and an authentication signal is received at the microphone. In the event that frequency response characteristics of the authentication signal match the frequency response characteristics of the calibration signal, the user is authenticated and the device is enabled for user interaction without requiring the user to input any additional data.
Abstract:
An embodiment takes the form of a computer-implemented method comprising causing a field-sequential color display of a wearable computing device to initially operate in a first color space; and based at least in part on data from one or more sensors of the wearable computing device, detecting movement of the wearable computing device that is characteristic of color breakup perception. The method further comprises, in response to detecting the movement that is characteristic of color breakup perception, causing the field-sequential color display to operate in a second color space.
Abstract:
Disclosed embodiments relate to a combined shipping container and balloon deployment system for deploying balloons into a balloon network. Such a shipping container may allow one or more balloons to be transported to a desired launch location, and then launched directly from the shipping container.
Abstract:
Methods and systems for intelligently zooming to and capturing a first image of a feature of interest are provided. The feature of interest may be determined based on a first interest criteria. The captured image may be provided to a user, who may indicate a level of interest in the feature of interest. The level of interest may be based upon to store the captured image and capture another image. The level of interest may be a gradient value, or a binary value. The level of interest may be based upon to determine whether to store the captured image, and if so, a resolution at which the captured image is to be stored. The level of interest may also be based upon to determine whether to zoom to and capture a second image of a second feature of interest based on the first interest criteria or a second interest criteria.
Abstract:
Methods and systems involving an incentivized recovery of balloon materials are disclosed herein. An example system may be configured to: (a) determine a landing location of a balloon, where the balloon has been configured to operate as a node in a balloon network; (b) detect a removal event corresponding to the balloon ceasing to operate as a node in the balloon network and descending to the landing location; and (c) in response to detecting the removal event, initiate a transmission of a recovery-assistance signal that is comprised of (i) location data corresponding to the landing location of the balloon and (ii) an indication of an incentive to recover the balloon.
Abstract:
Example methods and systems determine a position of a portion of a human eye based on electromagnetic radiation reflected from the surface of the human eye. A sensor associated with a computing device can be calibrated in response to an event. The computing device can receive data indicative of electromagnetic radiation reflected from a human eye. The computing device can determine a position of a portion of the human eye based on the received data indicative of electromagnetic radiation. The computing device can generate an indication including the position of the portion of the human eye. The computing device can transmit the indication from the computing device. In some embodiments, the data indicative of electromagnetic information can be provided by electromagnetic emitter/sensors mounted on a wearable computing device directed toward a human eye of a wearer of the wearable computing device.