摘要:
A method and system are provided in which a device that is operable to handle WiFi communication and WiMAX communication may receive downlink medium access protocol (MAP) information in a downlink sub-frame of a WiMAX frame and disable WiFi transmission during a portion of the downlink sub-frame based on the downlink MAP information. The disabled WiFi transmission may be enabled after data within the downlink sub-frame is decoded. The device may also receive uplink MAP information in the downlink sub-frame and may control a clear channel assessment associated with the WiFi transmission based on the uplink MAP information. The MAP information may comprise data or burst profile information and/or one or more physical control messages. A similar time domain approach may be utilized for coexistence between WiFi and long term evolution (LTE) coexistence, Bluetooth and WiMAX, and Bluetooth and LTE. Frame aggregation may be enabled to alleviate pending WiFi traffic.
摘要:
In a UMTS (universal mobile telecommunications system) Terrestrial Radio Access Network (UTRAN) based wireless system, a wireless network element (e.g., a base station) exchanges information with another wireless network element (e.g., a radio network controller) via data frames (uplink or downlink). Each data frame comprising a header portion and a payload portion, which comprises a QoS class indicator field. Illustratively, the eight bit spare extension field of a UTRAN data frame (uplink or downlink) is used to convey a four bit payload type indicator and a four bit QoS class indicator.
摘要:
A scheduler and a method for scheduling transmissions to a plurality of users in a communication network assigns a higher target minimum throughput for receiving a next transmission to a user based on a quality of service (QoS) class of the user. A token count that tracks the user's achieved performance relative to a target minimum throughput Is determined for each user in given timeslot, and a weight is determined for each user based on one or more of the token count and a current rate requested by the user. A user having the highest weight as determined by a weight function is scheduled to be served the next transmission. User priority for scheduling may be downgraded if an average data rate requested by the user is less than the target minimum throughput.
摘要:
An advance over the prior art is achieved through an efficient method for the dynamic selection of frequencies with low occupancy in a manner that results in minimizing the search for such frequencies and the risk of a large of number of nodes choosing the same frequency. A method for dynamically selecting the frequencies according to the invention includes the following parts. A channel loading indicator that determines if the mobile node needs to look for a new channel. A channel search algorithm that quickly determines the new channel to be used. A tracking algorithm that remembers the channels that were most recently determined to be loaded and hence should be avoided in the near future. In one embodiment of the invention a method of selecting frequencies for use by a device in a wireless communications network is presented. The method includes the steps of monitoring channel usage of given frequencies to determine loaded channels based on whether an associated channel usage threshold has been reached and, if the channel usage threshold has been reached, determining whether to switch from a loaded channel to another channel based on a probability function.
摘要:
A method for scheduling transmissions to a plurality of users in a communication network determines a satisfaction metric and a dissatisfaction metric for each user in a given timeslot that is to be used for a next scheduled transmission to one of the users. Each user is assigned a weight based on a value of at least one of the user's satisfaction metric, the user's dissatisfaction metric and a rate requested by the user. The use having the highest weight is selected to be served the next scheduled transmission in the given timeslot.
摘要:
An advance over the prior art is achieved through an efficient method to retransmit erroneous frames by identifying the users who are most likely to experience a frame error and requests retransmissions from them. Since the recovery is done by starting with the most likely, second most likely etc., the invention results in faster recovery of data. Moreover, the invention reduces the battery consumption of subsequent mobile nodes by suppressing the retransmission requests that were already made by nodes preceding it. A key element of the invention is to rank the set of receiver nodes in the order of decreasingly worse channel conditions, i.e., from worst to best. Hence, with K receiver nodes, a transmit node assigns rank 1 to a receiver node to which it has the poorest radio channel condition. Similarly, it assigns rank K to the receiver node to which it has the best radio channel condition. The channel condition is known at the receiver by keeping a simple measure of the number of data frames correctly received so far and the total number of frames transmitted to it. This information can be periodically sent back to the transmitter and thus aiding in the ranking procedure. Alternatively, if the transmitter is capable of sending a pilot/beacon, the receiver can do some averaging of received signal strength and provide such information back to the transmitter.
摘要:
A variable length sequence number is used to identify data units in a communication channel. The sequence number associated with the most recent data that has been received successfully and the sequence number expected with the next new data message to be received are examined to determine the minimum size sequence number necessary to unambiguously identify to the transmitter incorrectly received data that must be retransmitted in a later message. The receiver provides the transmitter with the sequence number associated with the last successfully received byte of data and the sequence number associated with the next expected byte of data. The receiver communicates this information to the transmitter using a NAK control message. The transmitter then uses the sequence number of the next byte of data to be transmitted and the information received in the control message from the receiver to determine the smallest number of bits necessary to represent the sequence numbers for both data transmissions and the retransmission of data that was not received properly by the receiver.