Abstract:
A digital microfluidic platform utilizes dual active matrix circuitry to actuate and heat liquid droplets on a biochip. Liquid droplets are introduced into a droplet handling area of the biochip where they can be actuated by electrodes residing in pixels of an actuating active matrix array according to the electrowetting on dielectric phenomenon and heated by heating elements residing in pixels of a heating active matrix array. Pixels of the actuating active matrix array and the heating active matrix array are independently addressable such that droplets in the droplet handling area can be selectively heated and actuated according to their location. The actuating active matrix array and heating active matrix array can be formed on the same or different substrates with the droplet handling area disposed above or between the substrates.
Abstract:
A digital microfluidic platform utilizes dual active matrix circuitry to actuate and heat liquid droplets on a biochip. Liquid droplets are introduced into a droplet handling area of the biochip where they can be actuated by electrodes residing in pixels of an actuating active matrix array according to the electrowetting on dielectric phenomenon and heated by heating elements residing in pixels of a heating active matrix array. Pixels of the actuating active matrix array and the heating active matrix array are independently addressable such that droplets in the droplet handling area can be selectively heated and actuated according to their location. The actuating active matrix array and heating active matrix array can be formed on the same or different substrates with the droplet handling area disposed above or between the substrates.