Abstract:
A digital microfluidic platform utilizes dual active matrix circuitry to actuate and heat liquid droplets on a biochip. Liquid droplets are introduced into a droplet handling area of the biochip where they can be actuated by electrodes residing in pixels of an actuating active matrix array according to the electrowetting on dielectric phenomenon and heated by heating elements residing in pixels of a heating active matrix array. Pixels of the actuating active matrix array and the heating active matrix array are independently addressable such that droplets in the droplet handling area can be selectively heated and actuated according to their location. The actuating active matrix array and heating active matrix array can be formed on the same or different substrates with the droplet handling area disposed above or between the substrates.
Abstract:
A digital microfluidic platform utilizes dual active matrix circuitry to actuate and heat liquid droplets on a biochip. Liquid droplets are introduced into a droplet handling area of the biochip where they can be actuated by electrodes residing in pixels of an actuating active matrix array according to the electrowetting on dielectric phenomenon and heated by heating elements residing in pixels of a heating active matrix array. Pixels of the actuating active matrix array and the heating active matrix array are independently addressable such that droplets in the droplet handling area can be selectively heated and actuated according to their location. The actuating active matrix array and heating active matrix array can be formed on the same or different substrates with the droplet handling area disposed above or between the substrates.
Abstract:
A material composition, which is used as a liquid resist, includes a first component comprising a monomer portion and at least one cationically polymerizable functional group, and a crosslinker reactive with the first component and comprising at least three cationically polymerizable functional groups. The material composition also includes a cationic photoinitiator. Upon exposure to UV light, the material composition crosslinks via cure to form a cured resist film that is the reaction product of the first component, the crosslinker, and the cationic photoinitiator. An article includes a substrate layer and a resist layer formed on the substrate layer from the material composition.
Abstract:
Polypeptides, polynucleotides, reassortant viruses, immunogenic compositions and vaccines comprising influenza hemagglutinin and neuraminidase variants and method using thereof are provided.
Abstract:
The complete polynucleotide sequence of the human respiratory syncytial virus subgroup B strain 9320 genome is provided. Proteins encoded by this polynucleotide sequence are also provided. Isolated or recombinant RSV (e.g., attenuated recombinant RSV), nucleic acids, and polypeptides, e.g., comprising mutations in the attachment protein G, are also provided, as are immunogenic compositions comprising such isolated or recombinant RSV, nucleic acids, and polypeptides. Related methods are also described.
Abstract:
A method of fabricating a device including imprinting a mold having a protrusion against a substrate having a resist layer such that the protrusion engages the resist layer. The mold further has a mask member positioned generally adjacent the resist layer. Radiation energy is then transmitted through the mold and into the resist layer; however, the mask member substantially prevents transmission of the radiation energy therethrough, thereby defining an unexposed area in the resist layer. Once the mold is removed from the substrate, which consequently forms a first feature from nanoimprinting, the unexposed area of resist layer is removed through dissolving in a developer solution.
Abstract:
The complete polynucleotide sequence of the human respiratory syncytial virus subgroup B strain 9320 genome is provided. Proteins encoded by this polynucleotide sequence are also provided. Isolated or recombinant RSV (e.g., attenuated recombinant RSV), nucleic acids, and polypeptides, e.g., comprising mutations in the attachment protein G, are also provided, as are immunogenic compositions comprising such isolated or recombinant RSV, nucleic acids, and polypeptides. Related methods are also described.
Abstract:
The complete polynucleotide sequence of the human respiratory syncytial virus subgroup B strain 9320 genome is provided. Proteins encoded by this polynucleotide sequence are also provided. Isolated or recombinant RSV (e.g., attenuated recombinant RSV), nucleic acids, and polypeptides, e.g., comprising mutations in the attachment protein G, are also provided, as are immunogenic compositions comprising such isolated or recombinant RSV, nucleic acids, and polypeptides. Related methods are also described.
Abstract:
A material composition, which is used as a liquid resist, includes a first component comprising a monomer portion and at least one cationically polymerizable functional group, and a crosslinker reactive with the first component and comprising at least three cationically polymerizable functional groups. The material composition also includes a cationic photoinitiator. Upon exposure to UV light, the material composition crosslinks via cure to form a cured resist film that is the reaction product of the first component, the crosslinker, and the cationic photoinitiator. An article includes a substrate layer and a resist layer formed on the substrate layer from the material composition.
Abstract:
A dispersible nanocomposite comprising nanotubes associated with nanoplatelets. A method for creating an exfoliated nanotubes solution, aligning nanotubes and depositing them on a substrate or in matrix. In one embodiment, the method includes a nanocomposite of at least one nanotube electrostatically associated with at least one nanoplatelet. The nanoplatelets may be removed from the suspension by altering the ionic strength to create an exfoliated nanotube solution. The exfoliated nanotube solution for injection into microchannel templates and aligned deposition.